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Meta-learning has arisen as a powerful tool for many machine learning problems. With multiple 
factors to be considered when designing learning models for real-world applications, meta-

learning with multiple objectives has attracted much attention recently. However, existing works 
either linearly combine multiple objectives into one objective or adopt evolutionary algorithms 
to handle it, where the former approach needs to pay high computational cost to tune the 
combination coefficients while the latter approach is computationally heavy and incapable to 
be integrated into gradient-based optimization. To alleviate those limitations, in this paper, we 
aim to propose a generic gradient-based Multi-Objective Meta-Learning (MOML) framework with 
applications in many machine learning problems. Specifically, the MOML framework formulates 
the objective function of meta-learning with multiple objectives as a Multi-Objective Bi-Level 
optimization Problem (MOBLP) where the upper-level subproblem is to solve several possibly 
conflicting objectives for the meta-learner. Different from those existing works, in this paper, 
we propose a gradient-based algorithm to solve the MOBLP. Specifically, we devise the first 
gradient-based optimization algorithm by alternately solving the lower-level and upper-level 
subproblems via the gradient descent method and the gradient-based multi-objective optimization 
method, respectively. Theoretically, we prove the convergence property and provide a non-

asymptotic analysis of the proposed gradient-based optimization algorithm. Empirically, extensive 
experiments justify our theoretical results and demonstrate the superiority of the proposed MOML 
framework for different learning problems, including few-shot learning, domain adaptation, multi-

task learning, neural architecture search, and reinforcement learning. The source code of MOML 
is available at https://github .com /Baijiong -Lin /MOML.

* Corresponding author at: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.

E-mail addresses: feiyang.ye.uts@gmail.com (F. Ye), bj.lin.email@gmail.com (B. Lin), yuezhixiong915@gmail.com (Z. Yue), yu.zhang.ust@gmail.com (Y. Zhang), 
ivor_tsang@cfar.a-star.edu.sg (I.W. Tsang).

URLs: https://feiyang-ye.github.io (F. Ye), https://baijiong-lin.github.io (B. Lin), https://yuezhixiong.github.io (Z. Yue), https://yuzhanghk.github.io/
Available online 25 July 2024
0004-3702/© 2024 Published by Elsevier B.V.

(Y. Zhang).

https://doi.org/10.1016/j.artint.2024.104184

Received 1 March 2023; Received in revised form 25 June 2024; Accepted 16 July 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
https://github.com/Baijiong-Lin/MOML
mailto:feiyang.ye.uts@gmail.com
mailto:bj.lin.email@gmail.com
mailto:yuezhixiong915@gmail.com
mailto:yu.zhang.ust@gmail.com
mailto:ivor_tsang@cfar.a-star.edu.sg
https://feiyang-ye.github.io
https://baijiong-lin.github.io
https://yuezhixiong.github.io
https://yuzhanghk.github.io/
https://doi.org/10.1016/j.artint.2024.104184
https://doi.org/10.1016/j.artint.2024.104184


Artificial Intelligence 335 (2024) 104184F. Ye, B. Lin, Z. Yue et al.

1. Introduction

In the past few years, deep learning has achieved remarkable success in various fields [54], as it can effectively and efficiently 
learn from massively high-dimensional data. However, training deep learning models from scratch often requires a large amount 
of labeled data to learn a large number of model parameters and requires manual selection of hyperparameters, leading to a huge 
dependence on data volume and the choice of hyperparameters.

Meta-learning has been originally suggested as one efficient strategy to overcome these issues by making models learn how to 
learn [23,24]. The key idea is that meta-learning agents gain knowledge from multiple meta-training tasks and then quickly reuse 
such knowledge to learn from new tasks with a handful of training examples. One view of meta-learning is to learn a general purpose 
learning algorithm that can generalize across tasks, and ideally enable each new task to be learned better. An alternating optimization-

based view is to frame meta-learning as a bi-level optimization procedure, where the optimization of the lower subproblem (a.k.a. the 
inner subproblem) represents an adaptation to a given task with learned meta-parameters, and the objective of the upper subproblem 
(a.k.a. the outer subproblem) is to learn meta-parameters [23]. From this perspective, meta-learning can be viewed as a procedure 
to solve a bi-level optimization problem and hence it has broad applications such as hyperparameter optimization [16], Neural 
Architecture Search (NAS) [38], and Reinforcement Learning (RL) [80]. In this paper, we also take this viewpoint.

Many studies on conventional meta-learning methods and applications only consider one single meta-objective. For example, the 
Model-Agnostic Meta-Learning (MAML) method [13] has been shown to be applicable to a broad range of meta-learning problems 
[24], but it only measures the performance on a validation dataset in the upper-level subproblem to evaluate the learned initialization 
of parameters. However, in real-world applications, more than one objective usually needs to be considered. For example, as an 
application of meta-learning, few-shot learning may need to consider not only the performance but also the robustness of the learned 
initialization of parameters, which can help the model adapt to new tasks. Another example is the DARTS method [38] in NAS. 
This differentiable method only evaluates the performance of the searched architecture on the validation dataset. However, in real-

world applications, the network size and performance should be balanced in NAS, especially when the searched architecture will be 
deployed to resource-constrained devices, such as mobile phones and edge facilities. In those applications, we can see an urgent need 
to optimize multiple (possibly conflicting) objectives in meta-learning.

Meta-learning with multiple objectives thus has drawn much attention in recent studies. Specifically, some works study specific 
meta-learning problems in the multi-objective case, such as multi-objective NAS [78,69,2,44], multi-objective RL [5], and so on. 
However, those works either linearly combine multiple objectives into a single objective for the upper-level subproblem [77,75,12]

or utilize multi-objective bi-level evolutionary algorithms [6,64,57] to handle it. The former approach needs to tune weights associated 
with all the objectives, which is time-consuming, and its performance depends on the set of candidate weights in, for example, the 
cross validation method. The latter approach, whose computational complexity is even higher, has no convergence guarantee in the 
optimization process and is not easy to be integrated into gradient-based learning models such as deep neural networks, which limits 
its use in many learning models.

To alleviate those limitations in existing works, in this paper we propose a unified gradient-based Multi-Objective Meta-Learning 
(MOML) framework with convergence guarantee. The MOML framework formulates objective functions in meta-learning with mul-

tiple objectives as a Multi-Objective Bi-Level optimization Problem (MOBLP), where the lower-level subproblem is to learn the 
adaptation to a task in a similar way to vanilla meta-learning and the upper-level subproblem minimizes a vector-valued function 
corresponding to multiple objectives for the meta-learner. To solve MOBLP, we devise the first gradient-based optimization algorithm 
by alternately solving the lower-level and upper-level subproblems via a gradient descent method and a gradient-based multi-objective 
optimization method such as [8], respectively. We theoretically prove the convergence properties of the proposed gradient-based op-

timization method. To show the effectiveness of the MOML framework, we apply it to several meta-learning problems, including 
few-shot learning, domain adaptation, multi-task learning, neural architecture search, and reinforcement learning.

In summary, the main contributions of this paper are three-fold.

1. We propose a unified MOML framework based on the MOBLP and devise a gradient-based optimization algorithm for the proposed 
MOML framework.

2. We prove the convergence properties of the proposed optimization algorithm.

3. We formulate several learning problems as instances of the MOML framework and experiments show that MOML achieves state-

of-the-art performance on those learning tasks.

A preliminary version of this work appeared in a conference paper [84]. Compared with the conference version, we rephrased the 
whole paper, added finite-step convergence analysis in Section 5.2, added a new application of the proposed MOML framework to 
reinforcement learning in Section 6.5, gave more details on experiments from Section 6.1 to Section 6.4, studied the use of another 
solver for multi-objective optimization in Section 6.4, and analyzed the training cost of the proposed method in Section 7.

The rest of this paper is organized as follows. In Section 2, we review some related works. In Section 3, we introduce the proposed 
MOML framework. The optimization details of the proposed model are described in Section 4. In Section 5, we present a theoretical 
analysis of the convergence of the proposed method. In Section 6, we present extensive experimental results to demonstrate the 
effectiveness of the proposed model. We provide the time complexity analysis for the proposed method in Section 7. Finally, we make 
2

conclusions in Section 8.
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2. Related work

2.1. Meta-learning

Meta-learning (a.k.a. learning to learn) learns knowledge from multiple tasks and then quickly adapts it to new tasks with a small 
number of samples. One of the most common applications of meta-learning is Few-Shot Learning (FSL). Meta-learning methods in FSL 
generally fall into three categories, including metric-based [66,68], model-based [34], and optimization-based [13,50] techniques. 
For the meta-training process, a widely used approach is to cast as a bi-level optimization problem. To see this, we take MAML, 
a representative optimization-based method, as an example. In MAML, the meta-training process simulates transfer learning by 
fine-tuning, so the learned initialization of model parameters is updated to solve each task based on a few examples and a few 
gradient descent steps. By training the initialization such that all simulated testing tasks fine-tune well, meta-learning produces a 
good initialization of the model that is easy to adapt to different tasks. Therefore, MAML adapts 𝜔 initialized by 𝛼 to new tasks 
using the associated training dataset and then updates the initialization 𝛼 according to the validation performance, where 𝛼 and 
𝜔 denote the meta-initialized parameter and the task-specific parameter, respectively. Correspondingly, we also called these two 
steps as the leader and follower in bi-level optimization problems [39], respectively. Similarly, most meta-learning methods can be 
formulated as a bi-level optimization problem. Therefore, from this perspective, meta-learning is a general learning paradigm with 
more applications [23].

2.2. Multi-objective optimization

Multi-objective optimization is to address the problem of simultaneously optimizing several potentially conflicting functions. 
Multi-objective optimization has wide applications in science and engineering due to the prevalent existence of conflicting objectives 
or criteria. If the objectives conflict with each other, no unique solution exists that optimizes all of them simultaneously. In such 
cases, the goal of multi-objective optimization is to find Pareto-optimal solutions. One widely used approach to solve multi-objective 
optimization problems is scalarizations. These methods convert the original problem to a single-objective optimization problem via 
the linear scalarization approach which is to linearly combine multiple objectives. Actually, many machine learning algorithms adopt 
this approach. For example, the training loss and the regularization term used to control the model complexity are two conflicting 
objectives, and most learning models minimize a linear combination of those two terms. Many other kinds of multi-objective optimiza-

tion algorithms have been proposed recently, such as evolutionary algorithms [88], population-based algorithms [18], gradient-based 
algorithms [8,47], and so on. In this work, we focus on gradient-based multi-objective optimization algorithms because this approach 
can easily be integrated into gradient-based machine learning models such as deep learning.

2.3. Bi-level optimization

Bi-level optimization is a special kind of optimization, where one problem is nested within another one. It has been recognized as 
a powerful optimization tool for meta-learning methods [23]. The generic Bi-Level optimization Problem (BLP) is formulated as

min
𝛼∈,𝜔∈ℝ𝑝

𝐹 (𝜔,𝛼) s.t. 𝜔 ∈ (𝛼), (1)

where the function 𝐹 is called the Upper-Level (UL) objective and (𝛼) is the solution set of the Lower-Level (LL) subproblem, and 
𝛼, 𝜔 denote the UL and LL variables, respectively.

There have recently been many algorithms [16,40,39] proposed to solve bi-level optimization. However, those existing methods 
mostly assume that the UL subproblem is a single-objective optimization problem (i.e., 𝐹 ∶ ℝ𝑝 × ℝ𝑛 → ℝ) and aim to propose op-

timization algorithms to maintain convergence properties under different assumptions such as non-convexity [39]. There are only 
a handful of works for solving Multi-Objective Bi-Level optimization Problems (MOBLP) [65,6,26]. However, all those works solve 
MOBLP via evolutionary algorithms and analyze it from a game theoretic point of view. In contrast, we are the first to analyze the 
bi-level multi-objective problem from the optimization perspective and propose a gradient-based algorithm to ensure the convergence 
with the notion of the Pareto optimality.

3. The MOML framework

To introduce the MOML framework, we first introduce a motivating example whose detailed formulation is in Section 6.1 and 
then present the formulation of the MOML framework.

3.1. A motivating example

Consider a robust 𝑁 -way 𝑀 -shot Few-shot Learning (FSL) problem, where each task is a 𝑁 -way classification, and it is to learn the 
meta-initialized parameter such that each task can be solved only with 𝑀 samples. 𝛼 and 𝜔(𝑖) denote the meta-initialized parameter 
and the task-specific parameter, respectively. For the 𝑖-th meta-training episode, we have a meta-training data set 𝑖 =𝑠(𝑖) ∪𝑞(𝑖), 
where 𝑠(𝑖) and 𝑞(𝑖) represent the support set and the query set, respectively. We utilize the cross-entropy loss as the task-specific 
3

loss and thus the objective of the LL subproblem can be defined as 𝑓 (𝜔(𝑖), 𝛼) = 𝐹 (𝜔(𝑖), 𝛼; 𝑠(𝑖)), where 𝐹 (⋅, ⋅, ⋅) denotes the average 
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loss on a dataset in terms of the cross-entropy loss function. The original FSL problem only evaluates the learned meta-initialized 
parameter in terms of the performance on the query set, thus it only has one objective in the UL subproblem. However, if we need to 
make the FSL model not only have good performance but also be robust to adversarial attack, what can the FSL model do? Such two 
objectives are also reasonable to make the FSL model possess good generalization performance. To achieve that, we could generate a 
perturbed query set from the query set in the 𝑖-th episode and denote it by 𝑞(𝑖),𝑎𝑑𝑣 . Different from the original FSL problem, in the 
UL subproblem, we now need to consider the cross-entropy loss both on the query set 𝑞(𝑖) and the perturbed query set 𝑞(𝑖),𝑎𝑑𝑣. So, 
we can formulate the UL subproblem as

𝐹 (𝜔(𝑖), 𝛼) =
(
𝐹 (𝜔(𝑖), 𝛼;𝑞(𝑖)),𝐹 (𝜔(𝑖), 𝛼;𝑞(𝑖),𝑎𝑑𝑣)

)
.

Since there are two objectives, the UL subproblem is a multi-objective optimization problem. This case has not been studied by 
existing bi-level optimization in machine learning and it motivates us to propose a more general framework to address such kind of 
problems.

3.2. The formulation

Therefore, in this paper, the proposed MOML framework has a unified objective function, which is formulated as a Multi-Objective 
Bi-Level optimization Problem (MOBLP), as

min
𝛼∈,𝜔∈ℝ𝑝

𝐹 (𝜔,𝛼) =
(
𝐹1(𝜔,𝛼), 𝐹2(𝜔,𝛼), ..., 𝐹𝑚(𝜔,𝛼)

)𝑇 s.t. 𝜔 ∈ (𝛼), (2)

where function 𝐹 ∶ ℝ𝑝 × ℝ𝑛 → ℝ𝑚 is a vector-valued jointly continuous function for the 𝑚 desired meta-objectives and  is a 
nonempty compact subset of ℝ𝑛. The goal of solving problem (2) is to find a Pareto-optimal solution, which is defined in Appendix A. 
In problem (2), (𝛼) is defined as the set of optimal solutions to minimize 𝑓 (𝜔, 𝛼) w.r.t. 𝜔, i.e.,

(𝛼) = argmin
𝜔

𝑓 (𝜔,𝛼). (3)

When 𝑚 equals 1, problem (2) reduces to a standard BLP, and hence from this perspective, the MOML framework is a generalization of 
meta-learning. In problems (2) and (3), 𝐹 is the UL subproblem and 𝑓 ∶ℝ𝑝×ℝ𝑛 →ℝ is the LL subproblem. The LL subproblem can be 
considered as a constraint for the UL subproblem. In MOML, 𝐹 contains multiple meta-objectives to be achieved for the meta-learner 
and 𝑓 defines the objective function for current task such as the training loss. In Section 6, we will see the application of MOML in 
different learning problems, including few-shot learning, domain adaptation, multi-task learning, NAS, and RL.

To solve problem (2), there exist several works [6,64,57] which adopt multi-objective evolutionary algorithms. However, such 
methods have a high complexity without convergence guarantee and are not easy to be integrated with gradient-based models such 
as deep neural networks. Hence, we do not include them in experiments. To the best of our knowledge, there is no gradient-based 
optimization algorithm with a convergence guarantee to solve an MOBLP, which is what we will do in the next section.

4. Optimization

In this section, we devise a general algorithm to solve the objective function in the proposed MOML framework (i.e., problem (2)).

4.1. Lower-level singleton condition

We now discuss an important assumption for problem (2). Due to the complicated dependency between UL and LL variables, 
solving it is challenging, especially when optimal solutions of the LL subproblem are not unique.

For a standard BLP with a single objective in the UL subproblem, many studies [9,16,62] potentially require that the LL subproblem 
only admits a unique minimizer 𝜔 for every 𝛼 ∈, which is formally introduced as the Lower-Level Singleton (LLS) condition in [40]. 
If the LLS condition does not hold, then for a fixed point 𝛼0, it is unclear which 𝜔 ∈ 𝑆(𝛼0) should be evaluated in the UL subproblem. 
Thus, this condition can simplify both the optimization process and convergence analyses.

To solve problem (2) with multiple objectives in the UL subproblem, the LLS condition is necessary. If not, the MOBLP is even 
ill-defined [10]. Moreover, since the UL objective 𝐹 is vector-valued, it is more challenging than standard BLP with a scale-valued 𝐹
to determine which 𝜔 should be evaluated in the UL subproblem. Although we can select one specific 𝜔 by adding some constraints 
(e.g., choosing the minimum-norm solution), it is not a general solution and would complicate the problem. Thus, in this work, we 
use the LLS condition to simplify the analyses.

With the LLS condition, the optimal solution for a given 𝛼 in the LL subproblem is denoted by 𝜔∗, and then problem (2) can be 
simplified as

min
𝛼∈

𝜑(𝛼) = 𝐹
(
𝜔∗(𝛼), 𝛼

)
s.t. 𝜔∗(𝛼) = argmin

𝜔
𝑓 (𝜔,𝛼). (4)

4.2. Gradient-based optimization algorithm

Here we design a general gradient-based optimization algorithm to solve problem (4). Usually, there is no closed form for the 
4

solution 𝜔∗(𝛼) of the LL subproblem and so it is difficult to optimize the UL subproblem directly. Another approach is to use the 
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optimality condition of the LL subproblem (i.e., ∇𝜔𝑓 (𝜔, 𝛼) = 0) as equality constraints for the UL subproblem in a way similar to 
[52]. However, this approach only works for LL subproblems with simple forms and cannot work for general learning models.

To solve problem (4), we take a strategy similar to the alternating optimization. In the first part of each iteration (corresponding 
to steps 3-6 in Algorithm 1), we solve the LL subproblem via gradient descent methods. Specifically, with an initialization 𝜔0 for 
the LL variable where the iteration index 𝑡 is omitted for notation simplicity, the solution of the LL subproblem can be updated 
for 𝐾 steps as 𝜔𝑘+1(𝛼) = 𝑘(𝜔𝑘(𝛼), 𝛼), 𝑘 = 1, … , 𝐾 − 1, where 𝑘 represents an operator to update 𝜔. Here we consider a first-

order gradient descent method for 𝑘 such as the Stochastic Gradient Descent (SGD) method and 𝑘 can be formulated explicitly as 
𝑘(𝜔𝑘(𝛼), 𝛼) = 𝜔𝑘(𝛼) − 𝜇∇𝜔𝑓 (𝜔𝑘(𝛼), 𝛼), where 𝜇 > 0 denotes the step size and ∇𝜔𝑓 (𝜔𝑘(𝛼), 𝛼) denotes the derivative of 𝑓 w.r.t. 𝜔 at 
𝜔 = 𝜔𝑘(𝛼). In the second part of each iteration (corresponding to steps 7-9 in Algorithm 1), by fixing the value of 𝜔 as the current 
solution 𝜔𝐾 (𝛼) obtained in the first part, we solve the UL subproblem as

min
𝛼

𝜑𝐾 (𝛼) = 𝐹
(
𝜔𝐾 (𝛼), 𝛼

)
. (5)

Problem (5) is an unconstrained Multi-Objective optimization Problem (MOP) and we can use any multi-objective optimization 
algorithms to solve it. Here we choose gradient-based multi-objective optimization methods as they can be seamlessly integrated 
into any gradient-based learning framework. There are several gradient-based multi-objective optimization algorithms [55,8,70]

and they commonly find an appropriate descent direction 𝑑 for all the objectives in 𝐹 by aggregating their gradients w.r.t. 𝛼. So 
such process is denoted by 𝑑 =MOPSolver({∇𝛼𝐹𝑖(𝜔𝐾 (𝛼), 𝛼)}𝑚𝑖=1) in Algorithm 1, where the derivative of 𝐹𝑖(𝜔𝐾 (𝛼), 𝛼) (w.r.t. 𝛼) can 
be computed by automatic differentiation techniques. In this paper, we mainly adopt a simple gradient-based MOP method called 
Multiple Gradient Descent Algorithm (MGDA) [8], whose details are introduced in Appendix A.2. In MGDA, the descent direction 
𝑑 for multiple objectives can be found in the convex hull of the gradients of each objective. Therefore, the descent direction can 
be determined by 𝑑 =

∑𝑚
𝑖=1 𝛾𝑖,𝑡∇𝛼𝐹𝑖(𝜔𝐾 (𝛼), 𝛼), where 

∑𝑚
𝑖=1 𝛾𝑖,𝑡 = 1 and 𝛾𝑖,𝑡 ≥ 0. Here 𝛾𝑖,𝑡 could be viewed as the weight of the 𝑖-th 

objective in the 𝑡-th iteration, but different from the weighted sum algorithm that uses a fixed weight for each objective, MGDA 
determines the weights {𝛾𝑖,𝑡} by minimizing the 𝓁2 norm of the convex hull of the gradients of each objective in each iteration.

Algorithm 1 Optimization Algorithm for MOML.

Input: numbers of iterations (𝑇 , 𝐾), step size (𝜇, 𝜈)

1: Randomly initialized 𝛼0 ;

2: for 𝑡 = 1 to 𝑇 do

3: Initialize 𝜔𝑡
0(𝛼𝑡);

4: for 𝑗 = 1 to 𝐾 do

5: 𝜔𝑡
𝑗
(𝛼𝑡) ← 𝜔𝑡

𝑗−1(𝛼𝑡) − 𝜇∇𝜔𝑓 (𝜔𝑡
𝑗−1(𝛼𝑡), 𝛼𝑡);

6: end for

7: Compute gradients ∇𝛼𝐹𝑖(𝜔𝑡
𝐾
(𝛼𝑡), 𝛼𝑡) for all the 𝑖’s;

8: Compute the gradient as 𝑑(𝜔𝑡
𝐾
(𝛼𝑡), 𝛼𝑡) =MOPSolver({∇𝛼𝐹𝑖(𝜔𝑡

𝐾
(𝛼𝑡), 𝛼𝑡)});

9: 𝛼𝑡+1 = 𝛼𝑡 − 𝜈𝑡𝑑(𝜔𝑡
𝐾
(𝛼𝑡), 𝛼𝑡) with a step size 𝜈𝑡 ;

10: end for

The entire algorithm to solve problem (4) is shown in Algorithm 1, which, to the best of our knowledge, is the first gradient-based 
optimization algorithm for MOBLPs.

5. Theoretical analysis

Algorithm 1 is simple and intuitive, but its convergence properties are unclear. In this section, we provide convergence analyses 
for the approximated problem (5) and Algorithm 1 under certain assumptions.

As an MOBLP, problem (4) cannot be reduced to a BLP with a scalar-valued objective function in the upper-level subproblem 
when using Algorithm 1 to solve it. Therefore, it has different theoretical properties from BLP as we need to focus on the convergence 
properties of a minimal point set instead of a minimum scalar in the UL subproblem.

We first recall some notions about vector-valued functions. Consider a vector-valued function 𝑔(𝑧) ∶ ℝ𝑛 →ℝ𝑚 (𝑚, 𝑛 ∈ ℕ, 𝑚 ≥ 2). We 
denote by Min 𝑔(𝑧) the set of all the minimal points of the function 𝑔(𝑧). Min 𝑔(𝑧) is also called the Pareto frontier or Pareto-optimal 
set. The corresponding efficient solution or Pareto-optimal solution set of 𝑔(𝑧) is denoted by Eff(g(z)). The convexity of vector-valued 
functions is called the P-convex. The details of these definitions can be found in Appendix A.

5.1. Convergence properties

To analyze the convergence properties of problem (5), we first make the following assumptions.

Assumption 1. We assume that (𝑖) the set  is a nonempty compact subset of ℝ𝑛; (𝑖𝑖) the functions 𝑓 (𝜔, 𝛼) and 𝐹 (𝜔, 𝛼) are both 
jointly continuous functions; (𝑖𝑖𝑖) argmin𝜔 𝑓 (𝜔, 𝛼) is a singleton for every 𝛼 ∈; (𝑖𝑣) 𝜔∗(𝛼) is uniformly bounded on .

Note that the third assumption in Assumption 1 is the LLS condition introduced in Section 4.1 and is widely adopted in BLPs 
5

[62,11]. With Assumption 1, we can obtain the following result.
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Theorem 1. Suppose Assumption 1 holds, then the function 𝐹 (𝜔∗(𝛼), 𝛼) is continuous w.r.t. 𝛼.

The proof of Theorem 1 is provided in Appendix B.1. Because  is a compact set, Theorem 1 implies the existence of solutions. 
Theorem 1 and the uniform convergence of 𝜔𝐾 (𝛼) can further imply the convergence for the solution of the LL subproblem, which is 
similar to that of the standard BLP problem [16].

For the convergence of Algorithm 1, we need to analyze minimal point sets of the images of perturbed functions 𝜑𝐾 (𝛼) and 𝜑(𝛼)
which are defined in problems (5) and (4), respectively. We consider the most natural set convergence under this setting, i.e., the 
Kuratowski-Painlevé set-convergence. Please refer to these definitions in Appendix A. Under certain assumptions that are used in 
analyses of BLP and MOP [16,46], we have the following convergence results.

Theorem 2. In addition to Assumption 1, it is assumed that (𝑖) The iterative sequence {𝜔𝑘(𝛼)}𝐾𝑘=1 converges uniformly to 𝜔∗(𝛼) on  as 
𝐾 → +∞; (𝑖𝑖)  is a convex set; (𝑖𝑖𝑖) 𝜑𝐾 is P-convex and 𝜑 is strictly P-convex. Then, the Kuratowski-Painlevé set-convergence of both the 
minimal point set and efficient solution set in Algorithm 1 holds, i.e.,

Min 𝜑𝐾 (𝛼)→Min 𝜑(𝛼), Eff 𝜑𝐾 (𝛼)→ Eff 𝜑(𝛼).

The proof of Theorem 2 is provided in Appendix B.2. Theorem 2 implies that, under some specific assumptions, both the minimal 
point set and solution set of the objective 𝜑𝐾 (𝛼) will converge to that of the objective 𝜑(𝛼) as 𝐾 → +∞. Thus, Theorem 2 provides a 
theoretical justification our proposed approximation procedure (5).

5.2. Finite-step convergence

In Theorem 2, we have proved the convergence of Algorithm 1 when 𝐾 → +∞. In practice, 𝐾 only takes a finite value to reduce 
the computational cost. For example, 𝐾 is set to 5 or 10 in few-shot learning methods (e.g., MAML [13] and BOIL [51]) and is set to 1
in neural architecture search methods (e.g., DARTS [38]). To further analyze how 𝐾 and 𝑇 affect the convergence of Algorithm 1, in 
this section, we provide a finite-step convergence analysis in a concrete case, where gradient descent is used to update 𝜔 and MGDA 
is used as a MOPSolver to update 𝛼.

To analyze the finite-step convergence of Algorithm 1, we first make the following assumptions.

Assumption 2. We assume that (𝑖) the function 𝑓 (𝜔, 𝛼) is 𝜗-strongly-convex w.r.t. 𝜔; (𝑖𝑖) the functions ∇𝐹𝑖 are 𝑐𝑖-Lipschitz continuous; 
(𝑖𝑖𝑖) the gradient functions ∇𝑓 and ∇𝐹𝑖 are Lipschitz function; (𝑖𝑣) the functions ∇𝛼∇𝜔𝑓 and ∇2

𝜔𝑓 are Lipschitz continuous.

Note that the strongly convexity assumption in Assumption 2 can ensure that the LL subproblem satisfies the LLS condition and 
is commonly used in the analysis for the BLPs [15,16].

In Algorithm 1, it first runs 𝐾 steps of gradient descent to find an approximation point 𝜔𝐾 , and then calculates the gradient of 
𝜑 w.r.t. the UL variable 𝛼. For the 𝑖-th entry of 𝜑, Algorithm 1 computes the gradient 𝜕𝐹𝑖(𝜔𝐾 (𝛼),𝛼)

𝜕𝛼
as an approximation of the true 

hyper-gradient that is computed as

∇𝜑𝑖(𝛼) =
𝜕𝐹𝑖 (𝜔∗(𝛼), 𝛼)

𝜕𝛼
=∇𝛼𝐹𝑖

(
𝜔∗(𝛼), 𝛼

)
+ 𝜕𝜔∗(𝛼)

𝜕𝛼
∇𝜔𝐹𝑖

(
𝜔∗(𝛼), 𝛼

)
. (6)

Such approximation causes an estimation error in each iteration of the outer loop. With Assumption 2, we provide the following 
theorem to analyze this estimation error.

Theorem 3. Suppose Assumption 2 holds, then if the step-size 𝜇 ≤ 1∕𝜗 in Algorithm 1, we have

‖‖∇𝛼𝐹𝑖(𝜔𝐾 (𝛼), 𝛼) − ∇𝛼𝜑𝑖(𝛼)‖‖ ≤ (
𝑐1(1 − 𝜇𝜗)

𝐾
2 + 𝑐2(1 − 𝜇𝜗)

𝐾−1
2
)‖𝜔0 −𝜔∗(𝛼)‖+ 𝑐3(1 − 𝜇𝜗)𝐾, (7)

where ‖ ⋅ ‖ denotes the 𝓁2 norm of a vector, 𝜔0 is the initialization of 𝜔 in the inner loop, and 𝑐1, 𝑐2, 𝑐3 are constants, which rely on the 
Lipschitz constants.

The proof of Theorem 3 is provided in Appendix B.3. Theorem 3 shows that the gradient estimation error ‖‖‖∇𝛼𝐹𝑖(𝜔𝐾 (𝛼), 𝛼) −

∇𝛼𝜑𝑖(𝛼)
‖‖‖ decays exponentially w.r.t. the number of steps in the inner loop. For notation simplicity, we denote by Γ(𝐾) the right-

hand side of the inequality (7). Therefore, according to Theorem 3, we have Γ(𝐾) → 0 as 𝐾 → +∞ if the step size of the inner loop 
satisfies 𝜇 ≤ 1∕𝜗.

In each iteration of the outer loop, the convex combination coefficients are determined by the MGDA method. We denote by 
𝛾̃𝑡 the convex combination vector determined by the estimated gradients ∇𝛼𝐹𝑖(𝜔𝐾 (𝛼), 𝛼) in the 𝑡-th iteration. We denote by 𝛾𝑡 the 
corresponding convex combination vector calculated by the true gradients ∇𝜑𝑖(𝛼𝑡) in the 𝑡-th iteration. Then, the solution sequence 
{𝛼𝑡} generated by MGDA method in Algorithm 1 can be formulated as 𝛼𝑡+1 = 𝛼𝑡 − 𝜈Λ(∇𝛼𝐹𝑖(𝜔𝐾 (𝛼), 𝛼), ̃𝛾𝑡), where the function Λ(⋅, ⋅)
denotes a combination of the first argument weighted by the second argument, i.e., Λ(𝜑, 𝛾) =

∑𝑚
𝑖=1 𝛾𝑖𝜑𝑖. Then we have the following 
6

theoretical result for the sequence {𝛼𝑡}.
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Theorem 4. Suppose Assumption 2 holds, then for 1 ≤ 𝑖 ≤ 𝑚, if the 𝑖-th entry of the function 𝜑𝐾 is 𝑐𝑖-strongly-convex, the 𝑖-th entry of the 
function 𝜑 is 𝐿𝑖-Lipschitz continuous, the step size 𝜈𝑡 in the outer loop of Algorithm 1 equals 2

𝑐(𝑡+1) , and 𝜇 ≤ 1∕𝜗, then for any point 𝛼∗ ∈, 
we have

min
𝑡=1,...,𝑇

Λ
(
𝜑𝐾 (𝛼𝑡), 𝛾̃𝑡

)
−Λ

(
𝜑𝐾 (𝛼∗), 𝛾̄𝑡

)
≤

4𝐿2 + 4Γ(𝐾)2

𝑐(𝑇 + 1)
, (8)

holds for the sequence {𝛼𝑡}𝑇𝑡=1, where 𝛾̄𝑡 =
∑𝑇

𝑡=1 𝑡𝛾̃𝑡∑𝑇
𝑡=1 𝑡

, 𝐿 =max1≤𝑖≤𝑚 𝐿𝑖, and 𝑐 =min1≤𝑖≤𝑚 𝑐𝑖.

The proof of Theorem 4 is provided in Appendix B.4. For any initialization, in Algorithm 1 we have a sequence of simplex vectors 
{𝛾̃𝑡}𝑇𝑡=1 by the MGDA method as the MOP solver. This sequence is bounded and it has one limit point denoted by ̃𝛾∗ . Since each entry of 
the function 𝜑𝐾 is strongly-convex, the weighted objective Λ(𝜑𝐾 (𝛼), 𝛾) has only one minimizer for any 𝛾 ∈Δ𝑚−1, where Δ𝑚−1 denotes 
an (𝑚 − 1)-dimensional simplex. Let 𝛼∗ be the unique solution of the objective Λ(𝜑𝐾 (𝛼), ̃𝛾∗). Then 𝛼∗ is a Pareto-optimal solution 
associated with the vector ̃𝛾∗ . Since the sequence 𝛾̄𝑡 converges to ̃𝛾∗, Theorem 4 implies that min𝑡=1,...,𝑇 Λ(𝜑𝐾 (𝛼𝑡), ̃𝛾𝑡) converges to the 
Pareto-optimal solution Λ(𝜑𝐾 (𝛼∗), ̃𝛾∗) with the convergence rate as 1∕𝑇 .

Theorem 4 only compares {𝛼𝑡} with the Pareto-optimal solution of the approximation objective function 𝜑𝐾 . To fully analyze the 
relation between {𝛼𝑡} and the Pareto-optimal solution of the original objective function 𝜑, we have the following theorem.

Theorem 5. Let 𝛼∗ be the Pareto-optimal solution of 𝜑𝐾 (𝛼) corresponding to the limit point ̃𝛾∗ of the sequence {𝛾̃𝑡}. With the assumptions 
in Assumption 2 and Theorem 4, if the 𝑖-th entry of the function 𝜑 is 𝑐𝑖-strongly-convex and 𝜇 ≤ 1∕𝜗, we have‖‖‖Λ(

𝜑(𝛼̄∗), 𝛾̃∗
)
−Λ

(
𝜑𝐾 (𝛼∗), 𝛾̃∗

)‖‖‖ ≤ 𝛿𝐿

𝑐
Γ(𝐾) + (1 − 𝜇𝜗)𝐾𝐿̂‖𝜔0 −𝜔∗(𝛼𝑡)‖, (9)

where 𝛼̄∗ is the Pareto-optimal solution of 𝜑(𝛼) corresponding to the weighted vector 𝛾̃∗, 𝛿 is the diameter of the bounded set , 𝐿̂ =
max1≤𝑖≤𝑚 𝐿̂𝑖, and 𝑐 =min1≤𝑖≤𝑚 𝑐𝑖.

The proof of Theorem 5 is provided in Appendix B.5. Theorem 5 implies that for the limit point of the sequence {𝛾̃𝑡}, the distance 
between the corresponding Pareto-optimal points in Min(𝜑(𝛼)) and Min(𝜑𝐾 (𝛼)) decays exponentially w.r.t. 𝐾 .

To analyze the convergence of Λ(𝜑𝐾 (𝛼𝑡), ̃𝛾𝑡) to the optimal minimal point Λ(𝜑(𝛼̄∗), ̃𝛾∗), based on Theorem 5 as well as an as-

sumption that the generated sequence {𝛾̃𝑡} approximates well the limit point ̃𝛾∗ in the Pareto-optimal set Min(𝜑𝐾 (𝛼)), we have the 
following theorem.

Theorem 6. Let 𝛼∗ be the Pareto-optimal solution of 𝜑𝐾 (𝛼) corresponding to the limit point ̃𝛾∗ of the sequence {𝛾̃𝑡}. With the assumptions 
in Assumption 2 and Theorem 4-5, we also assume that Λ(∇𝜑𝐾 (𝛼∗), ̃𝛾𝑡)⊤(𝛼𝑡 − 𝛼∗) ≥ 0 and the 𝑖-th entry of the function 𝜑𝐾 is 𝑀𝑖-Lipschitz. 
Then if the step size 𝜈𝑡 in the outer loop of Algorithm 1 satisfies 𝜈𝑡 = 𝜉∕𝑡 where 𝜉 ≥ 1∕2𝑐, and 𝜇 ≤ 1∕𝜗, we have

‖‖‖Λ(
𝜑𝐾 (𝛼𝑡), 𝛾̃∗

)
−Λ

(
𝜑(𝛼̄∗), 𝛾̃∗

)‖‖‖ ≤ 𝛿𝐿

𝑐
Γ(𝐾) + (1 − 𝜇𝜗)𝐾𝐿̂‖𝜔0 −𝜔∗(𝛼𝑡)‖+ max{2𝜉𝐿𝑀(2𝑐𝜉 − 1)−1,𝑀‖𝛼0 − 𝛼∗‖2}

𝑡
, (10)

where 𝛼0 is the initialization of 𝛼 in the inner loop, 𝛼̄∗ is the Pareto-optimal solution of 𝜑(𝛼) corresponding to the weighted vector 𝛾̃∗, and 
𝑀 =max1≤𝑖≤𝑚𝑀𝑖.

The proof of Theorem 6 is provided in Appendix B.6. Theorem 6 gives the finite-step convergence result, which depends on both 
numbers of steps in the inner and outer loops (i.e., 𝐾 and 𝑇 ). It demonstrates the efficacy of the proposed algorithm. When 𝐾 → +∞, 
the error bound has a O(1∕𝑡) convergence rate that matches the original MGDA algorithm [14].

6. Applications of MOML

In this section, we introduce applications of the proposed MOML framework in several learning problems, including few-shot 
learning, semi-supervised domain adaptation, multi-task learning, neural architecture search, and reinforcement learning. All the 
experiments are conducted on one single NVIDIA Tesla V100S GPU.

A simple baseline: SOML Before presenting different applications of the MOML framework, we introduce a simple baseline method 
used in experiments. For an MOBLP such as problem (2), a common approach is to transform the UL subproblem into a single objective 
problem via the linear scalarization approach [77,75,12]. Specifically, with fixed weights {𝛾𝑖}𝑚𝑖=1, which satisfy 

∑𝑚
𝑖=1 𝛾𝑖 = 1 and 𝛾𝑖 ≥ 0, 

problem (2) is transformed to a standard bi-level optimization problem as

min
𝛼∈,𝜔∈ℝ𝑝

𝑚∑
𝑖=1

𝛾𝑖𝐹𝑖(𝜔,𝛼) s.t. 𝜔 ∈ (𝛼), (11)

which has a scalar-valued function 
∑𝑚

𝑖=1 𝛾𝑖𝐹𝑖(𝜔, 𝛼) as the UL subproblem. In contrast with MOML, this approach is named as Single-

Objective Meta-Learning (SOML) in this paper and it will be used as an extra baseline method in our experiments. In SOML, we need 
7

to carefully tune {𝛾𝑖} with the cost to search them increasing exponentially with respect to 𝑚.
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6.1. Few-shot learning

Few-Shot Learning (FSL) aims to tackle the problem of training a model with only a few training samples [76]. Recently, FSL 
is widely studied from the perspective of meta-learning by using prior knowledge in the meta-training process. Most studies in FSL 
only consider the classification performance. However, in real-world applications, the performance is not the only important factor 
to consider. For example, we expect FSL models to not only have good performance but also be robust to adversarial attacks [32], 
which may help improve the generalization of FSL models. In the following, we can see that this setting can naturally be modeled by 
the proposed MOML framework.

6.1.1. Problem formulation

Suppose there is a base dataset 𝑏𝑎𝑠𝑒 with a category set 𝑏𝑎𝑠𝑒 and a novel dataset 𝑛𝑜𝑣𝑒𝑙 with a category set 𝑛𝑜𝑣𝑒𝑙 , where 
𝑏𝑎𝑠𝑒 ∩ 𝑛𝑜𝑣𝑒𝑙 = ∅. The goal of FSL is to adapt the knowledge learned from 𝑏𝑎𝑠𝑒 to help the learning of 𝑛𝑜𝑣𝑒𝑙 . In the 𝑖-th meta-

training episode, we generate from 𝑏𝑎𝑠𝑒 an 𝑁 -way 𝑘-shot classification task, which consists of a support set 𝑠(𝑖)
𝑏𝑎𝑠𝑒

and a query set 


𝑞(𝑖)
𝑏𝑎𝑠𝑒

. For the robustness, we add perturbations generated by the Projected Gradient Descent (PGD) method [32] into each data point 
in 𝑞(𝑖)

𝑏𝑎𝑠𝑒
to generate a perturbed query set 𝑞(𝑖),𝑎𝑑𝑣

𝑏𝑎𝑠𝑒
. The objective function of the FSL model that considers both the performance and 

the robustness can be formulated as

min
𝛼

(
𝐹 (𝜔∗(𝑖)(𝛼), 𝛼,𝑞(𝑖)

𝑏𝑎𝑠𝑒
),𝐹 (𝜔∗(𝑖)(𝛼), 𝛼,𝑞(𝑖),𝑎𝑑𝑣

𝑏𝑎𝑠𝑒
)
)

s.t. 𝜔∗(𝑖)(𝛼) = argmin
𝜔

𝐹 (𝜔,𝛼,
𝑠(𝑖)
𝑏𝑎𝑠𝑒

), (12)

where 𝜔 represents model parameters, 𝛼 denotes meta-parameters to encode common knowledge that can be transferred to novel 
tasks, and 𝐹 (𝜔, 𝛼, ) denotes the average classification loss of a model with model parameters 𝛼 and meta-parameters 𝜔 on a 
dataset . In the UL subproblem of problem (12), the first objective measures the classification loss on the query set based on 𝜔∗(𝑖)(𝛼)
obtained by solving the LL subproblem and the second objective measures the robustness via the classification performance on the 
perturbed query set. Problem (12) is a general formulation for a robust FSL model under the MOML framework, which depends on 
what 𝛼 and 𝜔 represent.

We adapt problem (12) to three representative FSL methods, including MAML [13], BOIL [51], and ProtoNet [66]. Specifically, 
we present the definition of model parameters 𝛼, meta-parameters 𝜔, and the classification loss 𝐹 (𝜔, 𝛼, ) of problem (12) based 
on these algorithms to show how to adapt the MOML framework to them.

MAML is an optimization-based meta-learning algorithm. In MAML, 𝛼 represents the meta-initialized parameter and 𝜔 represents 
the task-specific parameter. In this paper, we focus on classification tasks and so the loss function 𝐹 (𝜔, 𝛼, ) adopts the cross-

entropy loss with 𝛼 and 𝜔 on a dataset . Given the meta-initialized parameter 𝛼 of the backbone, we use 𝛼 to initialize task-specific 
parameters 𝜔0 and update 𝜔0 to 𝜔𝐾 in 𝐾 steps on the support set for the LL subproblem. Then, we compute the loss on the query 
set in the UL subproblem by using 𝜔𝐾 for the corresponding task. Thus, we can update 𝛼 and find universally good meta-initialized 
parameters that can quickly adapt to new tasks with a small number of samples. In problem (12), we aim to find the meta-initialized 
parameters 𝛼 that not only have good performance but also be robust to adversarial attacks when adapting to new tasks with a few 
examples.

BOIL is also an optimization-based meta-learning algorithm. Similar to MAML, BOIL aims to find universally good meta-initialized 
parameters. However, BOIL updates only the feature extractor of the model and freezes the classification layer in the LL subproblem. 
In the UL subproblem, BOIL updates the meta-initialized parameters of the feature extractor and classification layer, which is the 
same as MAML. Specifically, let 𝛼 = {𝛼𝜃, 𝛼𝜓}, where 𝛼𝜃 denotes the meta-initialized parameter of the task-specific feature extractor 
𝜃 and 𝛼𝜓 denotes the meta-initialized parameter of the task-specific classifier parameter 𝜓 , respectively. In BOIL, we update 𝛼 in the 
UL subproblem and only update 𝜔 = {𝜃} in the LL subproblem.

ProtoNet is a metric-based FSL algorithm. In ProtoNet, 𝛼 represents the parameter of the embedding function 𝑓 (𝑥; 𝛼), which 
encodes inputs into a vector space  . 𝜔𝑘 represents the prototype of the 𝑘-th class, which can be considered as a class center. 
Suppose there are 𝑛 labeled examples in dataset  and 𝐶 is the number of classes. Then, given a squared Euclidean distance function 
for  , the conditional probability of an example belonging to a class is formulated as

𝑃 (𝑦 = 𝑘 ∣ 𝑥;𝛼,𝜔) =
exp(−‖𝑓 (𝑥;𝛼) −𝜔𝑘‖2)∑𝐶

𝑘′=1 exp(−‖𝑓 (𝑥;𝛼) −𝜔𝑘′‖2) , (13)

where 𝜔 represents the set of all prototypes. Suppose that 𝑘 ⊂ is the set of examples labeled with class 𝑘 and 𝑛𝑘 is the corresponding 
number of examples. Then, the loss function is the negative log-likelihood

𝐹 (𝜔,𝛼,) = −1
𝑛

𝐶∑
𝑘=1

∑
𝑥𝑖∈𝑘

log𝑃 (𝑦𝑖 = 𝑘 ∣ 𝑥𝑖;𝛼,𝜔), (14)

where 𝑦𝑖 denotes the class label for 𝑥𝑖 . Different from optimization-based meta-learning algorithm such as MAML, in the LL subprob-

lem, by minimizing this loss function w.r.t. 𝜔, we have a closed-form solution 𝜔𝑘 = 1
𝑛𝑘

∑
𝑥𝑖∈𝑘

𝑓 (𝑥𝑖; 𝛼). In the UL subproblem, we 
8

minimize this loss w.r.t. 𝛼 on the clean and perturbed query sets.
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Table 1

Classification accuracy (abbreviated as “Clean Acc.”) and PGD accuracy (abbreviated as “PGD Acc.”) on the mini-ImageNet 
dataset and CUB dataset for 5-way 𝑘-shot FSL. The best result in each group of methods is highlighted in bold and the best 
result in each setting is annotated with underline.

Method mini-ImageNet CUB

Clean Acc. PGD Acc. B-score Clean Acc. PGD Acc. B-score
1
-s

h
o
t MAML [13] 45.24±0.81 1.18±0.15 2.10±0.52 54.62±0.87 3.92±0.49 7.28±0.61

MAML+SOML 40.78±0.75 23.91±0.67 29.83±0.43 49.60±0.81 36.42±0.87 41.89±0.84

MAML+MOML 39.23±0.76 25.80±0.67 31.12±0.70 48.66±0.87 38.37±0.90 42.75±0.89

BOIL [51] 47.64±0.85 3.05±0.22 5.53±0.61 61.79±0.94 6.53±0.48 11.81±0.61

BOIL+SOML 40.44±0.79 25.94±0.69 31.29±0.75 54.29±0.83 33.65±0.67 41.34±0.71

BOIL+MOML 41.22±0.83 27.77±0.75 32.98±0.79 52.15±0.93 40.44±0.94 45.55±0.94

ProtoNet [66] 44.67±0.75 2.60±0.21 3.73±0.35 52.93±0.91 2.00±0.29 3.53±0.47

ProtoNet+SOML 38.65±0.72 23.10±0.65 28.67±0.67 48.04±0.91 28.53±0.85 35.42±0.90

ProtoNet+MOML 35.06±0.70 27.24±0.65 30.51±0.66 42.26±0.89 32.19±0.82 36.24±0.85

5
-s

h
o
t MAML [13] 61.88±0.77 2.82±0.21 5.01±0.43 75.57±0.72 8.76±0.78 15.61±0.76

MAML+SOML 56.16±0.72 34.85±0.72 42.91±0.71 68.50±0.69 52.96±0.87 59.63±0.77

MAML+MOML 55.66±0.78 39.38±0.77 45.89±0.77 67.57±0.78 55.26±0.87 60.68±0.83

BOIL [51] 66.02±0.72 4.85±0.30 1.11±0.51 78.97±0.67 14.12±0.57 23.75±0.60

BOIL+SOML 58.54±0.76 34.28±0.75 42.94±0.78 76.25±0.60 44.86±0.81 56.28±0.73

BOIL+MOML 60.21±0.79 35.47±0.78 44.37±0.78 71.03±0.74 56.05±0.84 62.65±0.81

ProtoNet [66] 66.55±0.70 0.68±0.09 1.31±0.18 78.01±0.71 1.89±0.21 3.58±0.56

ProtoNet+SOML 59.11±0.71 39.41±0.73 46.93±0.71 72.51±0.68 52.61±0.77 60.81±0.72

ProtoNet+MOML 58.72±0.74 41.59±0.75 48.59±0.74 71.10±0.74 56.11±0.87 62.73±0.76

6.1.2. Experimental settings

Experiments in FSL are conducted on two FSL benchmark datasets, i.e., mini-ImageNet [73] and CUB-200-2011 (referred to as 
CUB) [74]. The mini-ImageNet dataset contains 100 classes with 600 images per class, sampled from the ImageNet dataset [7]. By 
following [56], this dataset is partitioned into 64, 16, and 20 classes for the base, validation, and novel datasets, respectively. The 
CUB dataset contains 200 classes and 11,788 images in total. Following [22], we randomly split this dataset into 100, 50, and 50 
classes for the base, validation, and novel datasets, respectively.

For all methods, each task is a 5-way 𝑘-shot classification problem, where 𝑘 equals 1 or 5. The input images are resized to 84 ×84
for both two datasets and applied data augmentation including random crop, random horizontal flip, and color jitter. A four-layer 
convolutional neural network (Conv-4) is used as the backbone, which consists of four blocks each of which consists of a convolution 
layer with 64 kernels of size 3 × 3, stride 1, and zero padding, a batch normalization layer, a ReLU activation function, and a max-

pooling layer with the pooling size 2 × 2. After the backbone, a fully-connected linear layer with 5 neurons is used as a classifier 
to output the prediction for the input image. The Adam optimizer [29] with the learning rate 0.001 is used for the optimization. 
Following [13], we set the number of LL iterations to be 5 (i.e., 𝐾 = 5) for the MAML-based and BOIL-based methods.

In the meta-training process, we randomly sample 𝑘 and 16 instances per class as the support set and the query set, respectively, 
in each episode. The adversarial attack on the query set is performed by the PGD attack with a perturbation size 𝜖 = 2∕255 and it 
takes 7 iterative steps with the step size of 2.5𝜖. In the meta-testing process, we generate 600 5-way 𝑘-shot tasks from 𝑛𝑜𝑣𝑒𝑙 , where 
each task has 𝑘 samples for the training and 16 samples for testing. We compute the average results on all the 600 testing tasks. We 
also compare with the vanilla FSL models (i.e., MAML, ProtoNet, and BOIL) since the problem (12) can be reduced to each of them 
when the second objective in the UL subproblem vanishes.

The classification accuracy and PGD accuracy are used to measure the performance. As the clean accuracy and the PGD accuracy 
are reported to be conflicting with each other [83], inspired by the widely-used F1-score based on precision and recall, we propose a 
new metric called Balance score (B-score), which is defined as B-score = 2 × (CA× PA)∕(CA+ PA) with CA and PA denoting the clean 
accuracy and PGD accuracy, respectively, to fully measure the performance in terms of the clean accuracy and PGD accuracy.

6.1.3. Experimental results

The average results over testing tasks on the mini-ImageNet and CUB datasets are presented in Table 1. From the results, we 
can see that the adversarial robustness of the original FSL methods (i.e., MAML, ProtoNet, and BOIL) is poor, while SOML and the 
proposed MOML can significantly improve the PGD accuracy. For example, MOML can improve the PGD accuracy of ProtoNet by 
about 40.91% under the 5-shot setting on the mini-ImageNet dataset. Since the classification accuracy and adversarial robustness are 
conflicting [83], the clean accuracy of SOML and MOML slightly drops when compared with the original FSL baselines. The B-score 
of MOML is higher than SOML, which indicates the multi-objective formulation in the UL subproblem of MOML is better than the 
single-objective formulation in SOML.

To demonstrate that MOML can achieve a nearly Pareto-optimal solution, we conduct experiments on the mini-ImageNet dataset 
under 5-way 1-shot and 5-way 5-shot FSL settings. The results are shown in Fig. 1. The grey triangles denote approximated Pareto-
9

optimal solutions computed by SOML with different combination coefficients on the UL subproblem. Those approximated Pareto-



Artificial Intelligence 335 (2024) 104184F. Ye, B. Lin, Z. Yue et al.

Fig. 1. An illustration to show that MOML (the blue circle) can achieve the Pareto optimum. Experiments are conducted on the mini-ImageNet dataset under 5-way 
1-shot and 5-way 5-shot FSL settings. The red line denotes the approximated Pareto frontier. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

optimal solutions form the approximated Pareto frontier (i.e., the red line). As shown in Fig. 1, the solution of MOML (in the blue 
circle) falls very well on the approximated Pareto front, demonstrating the effectiveness of MOML.

6.2. Semi-supervised domain adaptation

Semi-Supervised Domain Adaptation (SSDA) aims to address the domain shift between two domains so that the model trained in 
a label-rich source domain can be adapted to a target domain with limited labeled samples and abundant unlabeled samples [81]. A 
widely used approach for SSDA is to align the distributions of two domains by finding some domain-invariant components. There are 
usually three objectives to be considered, including classification losses on both source and target domains and an alignment loss to 
measure the domain discrepancy. While existing works such as [59,89] optimize all the objectives by simply computing a weighted 
sum of them, we formulate the SSDA problem under the MOML framework.

6.2.1. Problem formulation

Given a source domain  and a target domain  , the source domain has a large labeled dataset  , the target domain has a limited 
labeled dataset 𝑙


as well as a large unlabeled dataset 𝑢


, and  =𝑙



⋃
𝑢


denotes the entire dataset for the target domain. The 

average classification losses in the source and target domains are represented by 𝐷(𝜔,  ) and 𝐷(𝜔, 𝑙

), respectively, where 𝜔 is 

the model parameter. The alignment loss denoted by 𝐴(𝜔, 𝛼,  , 𝑢

) aims to learn domain-invariant components such as a domain-

invariant projection space by minimizing the local maximum mean discrepancy in DSAN [89] or domain-invariant prototypes by 
maximizing the entropy in MME [59], where 𝛼 is the initialization of 𝜔. Then we can formulate the SSDA problem under the MOML 
framework as

min
𝛼

(𝐷(𝜔∗(𝛼), ),𝐷(𝜔∗(𝛼),𝑙

),𝐴(𝜔,𝛼, ,

𝑢

)) s.t. 𝜔∗(𝛼) = argmin

𝜔
𝐴(𝜔,𝛼, ,

𝑢

). (15)

In the LL subproblem of problem (15), we aim to learn a model to find a domain-invariant component between two domains via 
the alignment loss 𝐴 by optimizing 𝜔 with an initialization 𝛼, and in the UL subproblem, we expect to improve the model further 
by updating 𝛼 via minimizing the two classification losses together with the alignment loss. Here 𝛼 acts similarly to the parameter 
initialization in MAML (i.e., 𝛼 in problem (12)) and helps learn 𝜔 in the LL subproblem, but it does not require any adaptation on 
the testing process.

Although a bi-level objective function is also formulated in Meta-MME [33], there exist two significant differences between Meta-

MME and MOML (i.e., problem (15)). Firstly, Meta-MME aims to learn the initialization of the network parameters by minimizing 
the source classification loss and the alignment loss in its LL subproblem and then validate it on few target labeled samples in the 
UL subproblem, which is different from MOML. Secondly, the proposed MOML method considers a multi-objective optimization 
problem in the UL subproblem, which is different from Meta-MME. Empirically, MOML outperforms the Meta-MME method as shown 
in Table 2.

We adapt problem (15) to MME [59] and DSAN [89], two domain adaptation models. We now give details about how to adapt 
the MOML framework to them. Let 𝜔 = {𝜃, 𝜓}, where 𝜃 denotes parameters in the backbone network and 𝜓 represents parameters in 
the classification layer. Correspondingly, let 𝛼 = {𝛼𝜃, 𝛼𝜓}, where 𝛼𝜃 and 𝛼𝜓 represent the initialization of 𝜃 and 𝜓 , respectively. Let 
x̂ = 𝑓 (𝜃, 𝛼𝜃, 𝑥) denote the feature representation of an input 𝑥 extracted by the backbone network parameterized by 𝜃, which has an 
initialization 𝛼𝜃 . 𝐶 denotes the number of classes. 𝑛 and 𝑛𝑢


denote the size of  and 𝑢


, respectively. The difference in applying 
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MOML to different domain adaptation methods is the design of the alignment loss 𝐴(𝜔, 𝛼,  , 𝑢

).
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Table 2

Classification accuracy (%) on the Office-31 dataset. † means the corresponding method is appropri-

ately modified to adapt to our experimental setting according to the released code. ‡ indicates that 
the corresponding model is reimplemented by us. ↑, ↓, and − in the subscript indicate an increase, 
a decrease, and no change, respectively, when compared with the original method in two groups of 
models based on DSAN or MME. The best results in each group of models (i.e., DSAN and MME) are 
highlighted in bold and the best results of each transfer task are annotated with underlines.

Method A→D D→A A→W W→A D→W W→D Avg

S+T 93.58 74.16 92.17 74.08 98.01 100 88.67

DANN† [17] 93.09 74.52 91.60 75.07 98.58 100 88.81

ENT† [19] 93.33 74.16 94.44 75.03 97.86 100 89.13

APE† [28] 94.81 76.10 91.80 76.02 97.29 99.75 89.29

ADR† [60] 93.33 76.73 93.30 76.51 97.86 100 89.62

CDAN† [42] 94.32 75.25 92.88 76.98 98.43 100 89.64

DSAN† [89] 93.83 76.82 93.59 75.68 98.43 100 89.73

DSAN+SOML 94.32↑ 76.91↑ 94.16↑ 75.99↑ 97.72↓ 100− 89.85↑

DSAN+MOML 94.08↑ 77.13↑ 94.59↑ 75.96↑ 98.36↓ 100− 90.02↑

MME† [59] 92.09 77.71 93.73 77.27 98.01 100 89.80

Meta-MME‡ [33] 92.10 77.01 94.30 76.87 98.29 100 89.76

MME+SOML 92.09− 77.57↓ 94.30↑ 77.20↓ 98.29↑ 100− 89.90↑

MME+MOML 94.32↑ 78.30↑ 94.44↑ 77.71↑ 98.43↑ 100− 90.53↑

When adapting to MME [59], the alignment loss 𝐴 is defined as the entropy loss to find domain-invariant prototypes:

𝐴(𝜔,𝛼, ,
𝑢

) =

𝑛𝑢
∑

𝑖=1

𝐶∑
𝑐=1

𝑝(𝑦 = 𝑐 ∣ x̂𝑖 ) log𝑝(𝑦 = 𝑐 ∣ x̂𝑖 ), (16)

where 𝜎(⋅) denotes the softmax function and 𝑝(𝑦 = 𝑐 ∣ x̂) =
[
𝜎
(

𝜓𝑇 x̂‖x̂‖
)]

𝑐
computes the conditional probability that 𝑥 belongs to class 

𝑐. 𝜓 can be considered as the prototypes based on the cosine distance. Although Eq. (16) is not explicitly dependent on source data 
 , the prototypes 𝜓 are computed on  in previous iterations. Therefore, minimizing Eq. (16) (i.e., maximizing the entropy) can 
promote the prediction distribution of unlabeled samples from the target domain to a uniform distribution, i.e., all target features are 
close to the prototypes, which indicates learning the domain-invariant prototypes.

When adapting to DSAN [89], the alignment loss is defined as the local maximum mean discrepancy to measure the difference 
between two domains. Thus, following DSAN, 𝐴 is formulated as

𝐴(𝜃, 𝛼𝜃, ,
𝑢

) = 1

𝐶

𝐶∑
𝑐=1

[
𝑛∑

𝑖,𝑗=1
𝑤

𝑖,𝑐
𝑤

𝑗,𝑐
𝑘(x̂

𝑖
, x̂

𝑗
) +

𝑛𝑢
∑

𝑖,𝑗=1
𝑤

𝑖,𝑐
𝑤

𝑗,𝑐
𝑘(x̂

𝑖
, x̂

𝑗
) − 2

𝑛∑
𝑖=1

𝑛𝑢
∑

𝑗=1
𝑤

𝑖,𝑐
𝑤

𝑗,𝑐
𝑘(x̂

𝑖
, x̂

𝑗
)

]
,

where 𝑘(⋅, ⋅) denotes a kernel function. Here 𝑤
𝑖,𝑐

= 𝑦𝑖,𝑐∑𝑛
𝑗=1 𝑦𝑗,𝑐

represents the possibility of sample 𝑥
𝑖

belonging to class 𝑐, where 𝑦𝑖,𝑐 is 

the 𝑐-th element of the one-hot label vector of 𝑥
𝑖

. The definition of weight 𝑤
𝑖,𝑐

is similar, while we use the prediction distribution 
as the pseudo label of 𝑥

𝑖
from 𝑢


since its true label is unavailable.

6.2.2. Experimental settings

Experiments are conducted on the Office-31 dataset [58], which has 3 domains: Amazon (A), Webcam (W) and DSLR (D). It 
contains 4,110 labeled images in total and each domain consists of 31 categories. By following [71,43], we construct all six trans-

fer tasks. Each class in the target domain has three labeled images in the training process by following [59]. Baseline models in 
comparison include a deep neural network (denoted by ‘S+T’) that is trained on 

⋃
𝑙


and eight domain adaptation methods:

ENT [19], DANN [17], ADR [60], CDAN [42], MME [59], Meta-MME [33], APE [28], and DSAN [89]. As DSAN and MME are 
two representative domain adaptation models, to improve their performance further, SOML and MOML adopt the alignment loss in 
DSAN and MME, respectively, leading to two groups of models, i.e., (DSAN, DSAN+SOML, DSAN+MOML) and (MME, Meta-MME, 
MME+SOML, MME+MOML). All the methods except S+T are trained on 

⋃
 .

We use the ResNet-50 model [21] pretrained on the ImageNet dataset as the backbone network followed by a Fully-Connected 
(FC) layer. The same network architecture is used for all baseline methods. All baselines use the same experimental setting as the 
original methods. For the training of all the DSAN-related models, the SGD optimizer with the learning rate 10−3 , the momentum 0.9
and the weight decay 5 × 10−4 is used for optimization. Following [33], the number of LL iterations 𝐾 of SOML and MOML is set to 
1. The batch size is set to 96, including 32 images in the source, labeled target, and unlabeled target domains, respectively. For all 
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the MME-related models, we use the same experimental settings as the original MME method.
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6.2.3. Experimental results

Experimental results on the Office-31 dataset are shown in Table 2. The incorporation of SOML into DSAN and MME consistently 
improves the performance of those two models and the proposed MOML method further improves the classification accuracy. For 
example, MME+MOML significantly improves the performance of the first five tasks compared with several baselines and achieves 
the perfect performance (i.e., the 100% accuracy) on the last task as most baselines did. Moreover, compared with several baselines, 
DSAN+MOML achieves the best result (i.e., 94.59%) on transfer task A→W and MME+MOML has the best accuracy (i.e., 78.30% and 
77.71%) on transfer tasks D→A and W→A. Moreover, MME+MOML achieves the best average classification accuracy of 90.53% and 
significantly outperforms all of the baselines. These experimental results indicate the effectiveness of the proposed MOML framework 
for SSDA.

6.3. Multi-task learning

Multi-Task Learning (MTL) [3,87,35] aims to improve the performance of multiple tasks simultaneously by leveraging useful 
information contained in these tasks. Learning the loss weighting is a challenge in MTL and there are some works [61,41,85] to 
solve this problem. Among those works, Sener and Koltun [61] formulate multi-task learning problems from the perspective of multi-

objective optimization and implicitly learn the task weights via MGDA, Liu et al. [41] estimate the task weight of each task as the 
ratio of the training losses in the last two iterations for the corresponding task, and Yu et al. [85] project each task’s gradient onto 
the normal plane of the other. Different from those works which are all based on single-level optimization problems on the entire 
training set, for the first time we formulate this problem as an MOBLP based on the split of the entire training dataset and solve this 
problem based on the MOML framework.

6.3.1. Problem formulation

Suppose there are 𝑚 tasks. The 𝑖-th task has a dataset 𝑖 for model training. Here each 𝑖 is partitioned into two subsets: the 
training dataset 𝑡𝑟

𝑖
and the validation dataset 𝑣𝑎𝑙

𝑖
, where 𝑡𝑟

𝑖
is used to train a multi-task model and 𝑣𝑎𝑙

𝑖
is to measure the 

performance of the multi-task model on the 𝑖-th task. 𝑓 (⋅; 𝜔), the learning function of the multi-task model parameterized by 𝜔, 
receives data points from the 𝑚 tasks and outputs predictions. Let 𝛼𝑖 ∈ [0, 1] denote the loss weight for the 𝑖-th task. The goal is to 
learn the simplex weight vector 𝜶 = (𝛼1, … , 𝛼𝑚)⊤ ∈Δ𝑚−1 and the model parameter 𝜔. The objective function of the proposed method 
under the MOML framework is formulated as

min
𝜶∈Δ𝑚−1

(
𝑀𝑇𝐿(𝜔∗(𝜶),𝑣𝑎𝑙

1 ),… ,𝑀𝑇𝐿(𝜔∗(𝜶),𝑣𝑎𝑙
𝑚 )

)
s.t. 𝜔∗(𝜶) = argmin

𝜔

𝑚∑
𝑖=1

𝛼𝑖𝑀𝑇𝐿(𝜔,𝑡𝑟
𝑖 ), (17)

where 𝑀𝑇𝐿(𝜔, ) = 1|| ∑(𝐱,𝑦)∈ 𝓁(𝑓 (𝐱;𝜔), 𝑦) denotes the average loss of 𝑓 (⋅; 𝜔) on a dataset  with || denoting the size of  and 
𝓁(⋅, ⋅) denoting a loss function. In the LL subproblem of problem (17), when given weights in 𝜶, we aim to learn a MTL model to 
get optimal parameters 𝜔∗ on the training dataset and in the UL subproblem, we expect to update 𝜶 via minimizing the loss of the 
trained MTL model with parameters 𝜔∗ on the validation dataset of each task.

6.3.2. Experiments settings

Experiments in MTL are conducted on the NYUv2 [63], Office-31, and Office-Home [72] datasets. The NYUv2 dataset is an 
indoor scene RGB-D image dataset, which consists of three tasks: 13-class semantic segmentation, depth estimation, and surface 
normal prediction. We use the NYUv2 dataset pre-processed by [41]. It contains 795 and 654 labeled images for training and test, 
respectively. The Office-31 dataset has been introduced in Section 6.2.2 and we consider the classification problem on each domain 
as one task, leading to three tasks. The Office-Home dataset contains four tasks: artistic images (Ar), clip art (Cl), product images

(Pr), and real-world images (Rw). It has 15,500 labeled images in total and each task consists of 65 object categories in office and 
home settings.

Baseline methods in the comparison include different loss weighting strategies such as Equal Weights (EW), Dynamic Weight 
Average (DWA) [41] with the temperature parameter 𝑇 as 2, MGDA [61], PCGrad [85], and SOML, and they are built on two 
multi-task architectures, including Deep Multi-Task Learning (DMTL) that adopts the hard-sharing structure to share the first several 
layers and Multi-Task Attention Network (MTAN) [41]. All methods are implemented based on the open-source LibMTL library [36].

NYUv2 The ResNet-50 pretrained on the ImageNet dataset is used as the backbone to extract features and we do not use data 
augmentation. Atrous Spatial Pyramid Pooling (ASPP) [4] modules are used as the decoder for each task-specific output. For the 
MTAN architecture, we add 𝑚 task-specific attention networks into the backbone based on the DMTL architecture. The MTL model 
with parameter 𝜔 in problem (17) is trained by the Adam optimizer with the learning rate as 10−4 and weight decay as 10−5. The 
loss weight 𝜶 in problem (17) is initialized with equal values and is optimized by the Adam optimizer with the learning rate as 10−4 . 
For SOML and the proposed MOML method, we randomly split 795 training images into two parts: 636 for training and the rest 159 
for validation and test on the same test dataset as all baselines. The number of LL iterations 𝐾 is set to 1 for the SOML and MOML 
methods. A batch size 8 is used for the DMTL architecture and 4 for the MTAN architecture.

Office-31 and office-home The ResNet-18 pretrained on the ImageNet dataset is used as the backbone to extract features and 𝑚 linear 
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layers are used for task-specific classification. We also add 𝑚 task-specific attention networks to build the MTAN architecture. The 
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Table 3

Performance on the NYUv2 dataset with three tasks: 13-class semantic segmentation, depth estimation, and surface normal prediction. The 
best combinations of the architecture and weighting strategy are highlighted in bold. The best results for each task on each measure are 
annotated with underlines. ↑ (↓) means the higher (lower) the result, the better the performance.

Architecture Weighting 
Strategy

Segmentation Depth Surface Normal Prediction

mIoU↑ Pix Acc↑ Abs Err↓ Rel Err↓ Angle Distance Within 𝑡◦

Mean↓ Median↓ 11.25↑ 22.5↑ 30↑

DMTL EW 52.71 74.78 0.3886 0.1581 23.8568 17.3537 34.57 60.45 71.63

DWA [41] 52.72 75.11 0.3931 0.1631 23.7894 17.3320 34.57 60.51 71.67

MGDA [61] 52.89 74.87 0.3963 0.1638 23.7513 17.2685 34.74 60.64 71.75

PCGrad [85] 53.22 75.45 0.3920 0.1658 23.2904 16.8728 35.47 61.58 72.56

SOML 53.20 75.22 0.3923 0.1628 23.6885 17.0228 35.42 61.03 71.97

MOML 54.98 75.98 0.3877 0.1618 23.2401 16.7388 35.90 61.81 72.76

MTAN [41] EW 53.97 75.90 0.3794 0.1580 22.8743 16.5502 36.54 62.52 73.31

DWA [41] 54.12 75.79 0.3902 0.1595 22.9691 16.6212 36.23 62.41 73.28

MGDA [61] 54.38 75.55 0.3854 0.1583 22.9396 16.4670 36.70 62.58 73.23

PCGrad [85] 54.40 76.13 0.3830 0.1581 23.0040 16.4636 36.67 62.65 73.34

SOML 54.03 75.48 0.3829 0.1581 22.8279 16.4259 36.74 62.67 73.46

MOML 54.23 75.63 0.3843 0.1567 22.7530 16.2468 37.20 63.09 73.65

Table 4

Classification accuracy (%) on the Office-31 and Office-Home datasets. The best combinations of the architecture and weighting 
strategy are highlighted in bold. The best results for each task on each measure are annotated with underlines.

Architecture Weighting 
Strategy

Office-31 Office-Home

A D W Avg Ar Cl Pr Rw Avg

DMTL EW 87.17 98.36 99.44 94.99 68.88 80.93 91.73 81.72 80.81

DWA [41] 87.52 99.18 99.44 95.38 70.39 79.95 90.36 82.05 80.69

MGDA [61] 87.52 99.18 99.44 95.38 69.44 79.30 91.63 81.72 80.52

PCGrad [85] 87.00 98.36 98.33 94.56 68.31 80.71 90.57 81.94 80.38

SOML 87.35 100 98.89 95.41 70.77 81.14 90.46 80.97 80.84

MOML 87.69 99.18 99.44 95.43 69.63 81.79 91.20 82.05 81.17

MTAN [41] EW 87.52 98.36 99.44 95.10 69.63 80.60 91.94 82.91 81.27

DWA [41] 87.52 100 99.44 95.65 69.63 81.14 91.10 82.48 81.09

MGDA [61] 87.35 99.18 99.44 95.32 69.25 81.36 91.73 82.81 81.29

PCGrad [85] 87.69 100 99.44 95.71 69.25 81.36 92.37 82.27 81.31

SOML 87.52 100 99.44 95.65 70.77 81.25 91.20 82.59 81.45

MOML 88.20 100 99.44 95.88 70.96 81.14 92.05 83.02 81.80

MTL model is trained by the Adam optimizer with the learning rate as 10−4 . The loss weight 𝜶 is initialized with equal values and 
optimized by the Adam optimizer with the learning rate as 10−3. Both the Office-Home and Office-31 datasets are split into three 
parts, including 60% for training, 20% for validation, and the remaining 20% for testing. The number of LL iterations 𝐾 is set to 1 
for the SOML and MOML methods. All the baselines are trained on training and validation datasets. We set the batch size to 64 for 
both datasets.

6.3.3. Experimental results

Experimental results on the NYUv2 dataset are shown in Table 3. Firstly, SOML outperforms the EW, DWA, and MGDA strategies 
when using the DMTL architecture and achieves comparable performance with the four baselines with the MTAN architecture. It 
indicates the proposed bi-level formulation (i.e., problem (17) with weighted combined objectives in the UL subproblem used in 
SOML) can achieve very good performance when compared with several baselines. Secondly, the MOML method outperforms the 
SOML method under both DMTL and MTAN architectures, which means the multi-objective formulation in the UL subproblem is 
better than the single-objective formulation. Finally, it is noticeable that the proposed MOML method achieves better results in 
many metrics. For example, when training with the DMTL architecture, MOML can achieve 54.98% in terms of the mIoU, which is 
significantly higher than several baselines even with the advanced MTAN architecture. MOML, with the MTAN architecture, achieves 
the best results on six metrics.

The loss weights learned by the proposed MOML are (0.3120, 0.3804, 0.3076) and (0.2541, 0.4860, 0.2599) for the three tasks (i.e., 
semantic segmentation, depth estimation, and surface normal prediction) when using the DMTL and MTAN architectures, respectively. 
It is interesting to find that when using different architectures, the weight of the depth estimation task is commonly the highest, while 
the other two tasks have similar weights.

Experimental results on the Office-31 and Office-Home datasets are shown in Table 4. Firstly, we notice that SOML achieves com-

parable performance with several baselines under both DMTL and MTAN architectures on both datasets, which means the proposed 
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bi-level formulation (i.e., problem (17) with weighted combined objectives in the UL subproblem) is competitive when comparing 
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with the baselines with the single-objective formulation. Secondly, the proposed MOML slightly outperforms SOML in all cases. This 
indicates that the multi-objective formulation in the UL subproblem is better than the single-objective formulation in SOML. Finally, 
compared with several baselines, the proposed MOML achieves the best result in some tasks, such as the best classification accuracy 
88.20% in task A on the Office-31 dataset. Those experimental results show that the proposed MOML framework performs better for 
learning loss weights in MTL.

6.4. Neural architecture search

Neural Architecture Search (NAS) aims to design the architecture of neural networks in an automated way. Most NAS methods 
focus on searching architectures with the best classification accuracy. However, in real-world applications, we need to consider 
multiple factors in the architecture design. For example, we expect that the searched architecture has good performance, behaves 
robustly to noises, and consumes low resource. In this case, we formulate NAS with multiple objectives as a case of MOML.

6.4.1. Problem formulation

By following the DARTS method [38], in an operation space denoted by , each element is an operation function 𝑜(⋅) and each 
cell is a directed acyclic graph with 𝑁 nodes, where each node represents a hidden representation and each edge (𝑖, 𝑗) denotes a 
candidate operation 𝑜(⋅) with a probability 𝛼(𝑖,𝑗)𝑜 . Therefore, 𝜶 = {𝛼(𝑖,𝑗)𝑜 }(𝑖,𝑗)∈𝑬,𝑜∈ is a representation of the neural architecture, where 
𝑬 denotes the set of all the edges in all the cells. The entire dataset is split into a training dataset denoted by 𝑡𝑟 and a validation 
dataset denoted by 𝑣𝑎𝑙 .

The multi-objective NAS considers three objectives: classification accuracy, adversarial robustness, and the number of parameters. 
We formulate three corresponding losses as 𝑁 (𝜔, 𝜶, 𝑣𝑎𝑙), 𝑁 (𝜔, 𝜶, 𝑎𝑑𝑣

𝑣𝑎𝑙
), and 𝑛𝑜𝑝(𝜶), where 𝑣𝑎𝑙 denotes the validation dataset 

and 𝑎𝑑𝑣
𝑣𝑎𝑙

denotes the perturbed validation dataset by adding perturbations on each data point, and the objective function under the 
MOML framework is formulated as

min
𝜶

(
𝑁 (𝜔∗(𝜶),𝜶,𝑣𝑎𝑙),𝑁 (𝜔∗(𝜶),𝜶,𝑎𝑑𝑣

𝑣𝑎𝑙
),𝑛𝑜𝑝(𝜶)

)
s.t. 𝜔∗(𝜶) = argmin

𝜔
𝑁 (𝜔,𝜶,𝑡𝑟), (18)

where 𝜔 denotes all the model parameters in the neural network.

In problem (18), loss function 𝑁 (𝜔, 𝜶, ) denotes the average classification loss on a dataset  of a neural network with pa-

rameters 𝜔 and an architecture 𝜶. To formulate 𝑛𝑜𝑝(𝜶), we denote by 𝑛𝑜 the number of parameters associated with an operation 𝑜
and by 𝑁𝑛𝑜𝑝(𝜶) the number of parameters in a searched architecture 𝜶. Then 𝑁𝑛𝑜𝑝(𝜶) can be computed by 𝑁𝑛𝑜𝑝(𝜶) =

∑
(𝑖,𝑗)∈𝑬 𝑛(𝑖,𝑗), 

where 𝑛(𝑖,𝑗) is the number of parameters of the searched operation on the edge (𝑖, 𝑗). As we determine the operation of each edge by 
selecting the one with the largest probability, hence we have 𝑛(𝑖,𝑗) = 𝑛argmax𝑜∈ 𝛼

(𝑖,𝑗)
𝑜

. As the argmax operation is non-differentiable, 
we use the softmax function to approximate 𝑁𝑛𝑜𝑝(𝜶) as

𝑁̂𝑛𝑜𝑝(𝜶) =
∑

(𝑖,𝑗)∈𝑬

∑
𝑜∈

exp(𝛼(𝑖,𝑗)𝑜 )∑
𝑜′∈ exp(𝛼(𝑖,𝑗)

𝑜′
)
𝑛𝑜. (19)

Therefore, to search a network architecture with an expected size 𝐿, 𝑛𝑜𝑝(𝜶) can be formulated as

𝑛𝑜𝑝(𝜶) = |𝑁̂𝑛𝑜𝑝(𝜶) −𝐿|. (20)

In the LL subproblem of problem (18), when given the architecture 𝜶, we can train a model with optimal parameters 𝜔 on the 
training dataset and in the UL subproblem, we expect to update the architecture 𝜶 by making a trade-off among the validation loss, 
the adversarial robustness, and the number of parameters. It is easy to see that the DARTS method is a special case of problem (18)

when its UL subproblem contains the first objective only and hence problem (18) generalizes the DARTS method by considering two 
more objectives.

Compared with the NSGANetV2 method [44] that utilizes a multi-objective bi-level evolutionary algorithm, MOML is more ef-

ficient and has a convergence guarantee. Moreover, NSGANetV2 uses ensembled surrogate models to predict the accuracy of an 
architecture, which may incur a performance gap between the UL and LL subproblems. In the LL subproblem of NSGANetV2, it only 
chooses over 300 candidate architectures for evaluation with a supernet constructed for weight sharing, which may lead to suboptimal 
solutions.

6.4.2. Experimental settings

Experiments in NAS are conducted on the CIFAR-10 dataset [31]. We compare the proposed MOML with the DARTS method 
and three baselines, including SNAS [79], RC-DARTS [27], and ENAS [53]. We search for neural networks with different expected 
sizes (i.e., different 𝐿’s used in Eq. (20)) via the MOML method. To make the network size searched by DARTS comparable with 
that of MOML under different settings, we use different numbers of initial channels in DARTS during the evaluation process. Hence, 
according to the parameter size (i.e., 𝐿=1, 2, and 3), we split the results of DARTS, SOML and MOML into three groups.

As claimed in Section 4.2, we can use any gradient-based optimization algorithm to update the UL variable. To verify this, we 
here use the CAGrad method [37] as an alternating MOPSlover to update the UL variable in Algorithm 1. CAGrad explicitly controls 
the minimum decreasing rate to optimize the average loss of all tasks. The setting of the CAGrad method follows [37]. This approach 
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can be considered as an extended version of MOML and we call it as MOML+CAGrad.
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Table 5

Comparison between MOML and DARTS and the other three baselines on the CIFAR-10 
dataset. ↑ indicates that a larger value is better, while ↓ implies that a lower value is bet-

ter. “{DARTS-C#channels}” means that the architecture searched by DARTS is evaluated with 
the initial number of channels as “channels”. “{SOML-V#size-C#channels}” means that the ar-

chitecture searched by SOML with 𝐿 as “size” is evaluated by the initial number of channels 
as “channels”. “{MOML-V#size}” denotes the architecture searched by MOML with 𝐿 as “size”. 
“{MOML+CAGrad-V#size}” means using CAGrad method as the MOPSlover with 𝐿 as “size”. The 
B-score, which is defined in Section 6.1.2, measures the balance between the clean accuracy and 
PGD accuracy when the numbers of parameters in different architectures are comparable.

Architecture Params (MB) ↓ Clean Acc. (%) ↑ PGD Acc. (%) ↑ B-score

SNAS (moderate) [79] 2.8 97.15 - -

RC-DARTS-C42 [27] 3.3 97.19 - -

ENAS [53] 4.6 97.11 - -

DARTS-C26 [38] 1.787 96.91 28.45 43.98

SOML-V1-C38 1.750 96.36 40.20 56.73

MOML-V1 1.754 96.48 42.66 59.16

MOML+CAGrad-V1 1.751 96.40 41.00 57.53

DARTS-C30 [38] 2.354 97.13 31.53 47.60

SOML-V2-C42 2.402 97.03 31.44 47.49

MOML-V2 2.367 97.18 36.15 52.69

MOML+CAGrad-V2 2.395 97.16 35.68 52.19

DARTS-C34 [38] 2.998 97.34 30.31 46.22

SOML-V3-C36 3.018 97.18 35.36 51.85

MOML-V3 3.018 97.25 35.22 51.71

MOML+CAGrad-V3 3.015 97.20 35.40 51.89

The search space and training procedure of MOML adopt the same settings as DARTS [38]. Specifically, in both normal and 
reduction cells, the set of operations  contains eight operations, including 3 ×3 separable convolutions, 5 ×5 separable convolutions, 
3 × 3 dilated separable convolutions, 5 × 5 dilated separable convolutions, 3 × 3 max pooling, 3 × 3 average pooling, identity, and 
zero. Half of the training set is used to train a model, and the other half is used for validation. A small network of 8 cells is trained 
with a batch size of 64 and 16 initial channels for 50 epochs. Following [38], the number of LL iterations 𝐾 is set to 1 for all the 
methods in comparison. The Adam optimizer with the learning rate 3 × 10−4, the momentum 𝛽 = (0.5, 0.999), and the weight decay 
1 × 10−3 are used to update 𝜶 in the UL subproblem. The SGD optimizer with the decayed learning rate down from 0.025 to 0 by a 
cosine schedule, the momentum 0.9, and the weight decay 3 × 10−4 is used to update 𝜔 in the LL subproblem.

In the evaluation stage, a neural network of 20 searched cells is trained on the full training set for 600 epochs with the batch 
size as 96, the initial number of channels as 36, the length of a cutout as 16, the dropout probability as 0.2, and auxiliary towers of 
weight as 0.4. The full testing set is used for testing. Adversarial examples are generated using the PGD attack with the perturbation 
size 𝜖 = 1∕255 and the PGD attack takes 10 iterative steps with the step size of 2.5𝜖 as suggested in [32].

6.4.3. Experimental results

Experimental results on the CIFAR-10 dataset are shown in Table 5. Compared with three baselines (i.e., SNAS, RC-DARTS, and 
ENAS), the proposed MOML and MOML+CAGrad can search architecture with similar or less parameter size but higher clean accuracy 
than all baselines. Compared with DARTS, MOML and MOML+CAGrad achieve a better trade-off in terms of accuracy, network size, 
and robustness. Specifically, with a comparable number of parameters, the MOML method improves the robustness while testing 
accuracies are comparable or even slightly better. For example, compared MOML-V1 with DARTS-C26, the PGD accuracy increases 
by about 14%, while the clean test accuracy only drops around 0.5%. In addition, compared with SOML, MOML has a higher B-score 
when 𝐿 equals 1 and 2 and has a comparable B-score when 𝐿 equals 3. It indicates that MOML with the multi-objective formulation 
in the UL subproblem can achieve a better trade-off between clean accuracy and PCG accuracy than SOML with the single-objective 
formulation. Moreover, MOML+CAGrad has a higher B-score than SOML in all the settings, which further illustrates the generality of 
the proposed MOML framework that different optimization algorithms can be used to solve the UL subproblem. According to Table 5, 
experimental results show that the MOML and MOML+CAGrad methods can search more robust architectures with comparable model 
size and comparable classification accuracy when compared with all the baseline models.

6.5. Reinforcement learning

Reinforcement learning aims to deal with the problem of how intelligent agents ought to take action in an environment to maximize 
the notion of cumulative reward. We consider the Multi-Task Reinforcement Learning (MTRL) problem, which aims to improve the 
performance of agents in multiple tasks and is a promising approach to train effective real-world agents [86]. In the following, we 
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formulate the MTRL problem under the MOML framework.
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6.5.1. Problem formulation

Suppose there are 𝑚 reinforcement learning tasks, each of which can be defined as policy search in the Markov decision process 
(MDP) [86]. Each task  corresponds to an MDP, represented by a tuple (𝑆, 𝐴, 𝑃 , 𝑅, 𝐻, 𝛾), where 𝑆 defines the state space, 𝐴 defines 
the action space, 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) represents the state transition probability that the next state 𝑠𝑡+1 occurs given the current state 𝑠𝑡 and 
action 𝑎𝑡, 𝑅(𝑠, 𝑎) is a reward function, 𝐻 is the horizon, and 𝛾 is the discount factor. The goal of MTRL is to learn a policy 𝜋(𝑎|𝑠, 𝑧)
that maximizes the expected return in all the tasks formulated as 𝔼 ∼𝑝( )[𝔼𝜋[

∑𝑇
𝑡=1 𝛾

𝑡𝑅𝑡(𝑠𝑡, 𝑎𝑡)]], where 𝑧 represents an encoding of a 
task.

We now introduce the Actor-Critic (AC) method [30] as an example to show how to view a reinforcement learning problem as 
a bi-level optimization problem. The AC method is a representative reinforcement learning technique that simultaneously learns a 
policy function and a value function. Consider a parameterized state-action value function 𝑄(𝑠𝑡, 𝑎𝑡) and a tractable policy 𝜋. The AC 
method first uses the actor 𝜋 to interact with the environment and to learn the value function 𝑄 by minimizing the temporal difference 
(TD) error. Then it uses the given value function to update the policy network by maximizing the expected discounted cumulative 
reward. Therefore, the value function can be considered to be optimized with respect to the optimum of the policy function. Thus, 
the AC method can be viewed as a bi-level optimization problem where the actor and critic correspond to the LL and UL variables, 
respectively [39].

In MTRL, suppose each task shares the same model, and we consider a parameterized state-action function 𝑄𝛼 (𝑠𝑡, 𝑎𝑡) and a tractable 
policy 𝜋𝜔(𝑎𝑡|𝑠𝑡, 𝑧), where 𝛼 denotes parameters of the state-action value-function and 𝜔 denotes parameters of the policy network. 
Then, according to the above discussion, we can formulate the MTRL problem under the MOML framework as

min
𝜶

(
𝑄(𝜔∗(𝜶), 𝛼;𝑧1),… ,𝑄(𝜔∗(𝜶), 𝛼;𝑧𝑚)

)
s.t. 𝜔∗(𝜶) = argmin

𝜔

𝑚∑
𝑖=1

𝐽𝜋(𝜔,𝛼;𝑧𝑖), (21)

where 𝑄(𝜔, 𝛼; 𝑧𝑖) and 𝐽𝜋(𝜔, 𝛼; 𝑧𝑖) represent the loss function for the state-action function 𝑄 and the policy network of the 𝑖-th task, 
respectively, and 𝑧𝑖 represents the encoding vector of the 𝑖-th task.

We adapt problem (21) into the Soft Actor-Critic (SAC) method [20], which is an off-policy actor-critic deep RL algorithm and 
has been widely used in most MTRL models [67,86]. For the 𝑖-th task, we use 𝜋𝑖

(𝑠𝑡, 𝑎𝑡) and 𝜋𝑖
(𝑠𝑡) to denote the state-action 

marginals and state of the trajectory distribution induced by a policy 𝜋(𝑎𝑡|𝑠𝑡, 𝑧𝑖). The SAC method for the 𝑖-th task is to find the 
policy to maximize 𝔼(𝑠𝑡,𝑎𝑡)∼𝜋𝑖

∑
𝑡[𝑅(𝑠𝑡, 𝑎𝑡) + 𝛽𝑖(𝜋(⋅|𝑠𝑡, 𝑧𝑖))], where 𝛽𝑖 represents the temperature for task 𝑖 and (⋅) denotes the 

entropy function. In SAC method, the soft Q-function parameters can be trained to minimize the soft Bellman residual. Therefore, the 
objective function of the soft Q-function for the 𝑖-th task is formulated as

𝑄(𝜔,𝛼;𝑧𝑖) = 𝔼(𝑠𝑡,𝑎𝑡)∼𝜋𝑖

[1
2

(
𝑄𝛼(𝑠𝑡, 𝑎𝑡) −

(
𝑅(𝑠𝑡, 𝑎𝑡) + 𝛾𝔼𝑠𝑡+1∼𝑃 [𝑉𝛼̂(𝑠𝑡+1, 𝑧𝑖)]

))2]
, (22)

where 𝑉 (𝑠𝑡, 𝑧𝑖) = 𝔼𝑎𝑡∼𝜋(𝑎𝑡|𝑠𝑡,𝑧𝑖)[𝑄(𝑠𝑡, 𝑎𝑡) − 𝛽𝑖 log𝜋(𝑎𝑡|𝑠𝑡, 𝑧𝑖)] and parameters in 𝛼̂ are an exponentially moving average of the soft 𝑄-

function weights, which is to stabilize training [49]. The policy parameters 𝛼 can be learned by directly minimizing the expected 
KL-divergence, and the corresponding objective for the 𝑖-th task is formulated as

𝐽𝜋(𝜔,𝛼;𝑧𝑖) = 𝔼𝑠𝑡∼𝜋𝑖

[
𝐷KL

(
𝜋𝜔(⋅ ∣ 𝑠𝑡, 𝑧𝑖)‖ exp(𝑄𝛼(𝑠𝑡 ∣ ⋅))

𝑍𝛼(𝑠𝑡)

)]
, (23)

where 𝑍𝛼(𝑠𝑡) denotes the partition function to do the normalization. By following Haarnoja et al. [20], we minimize the objective 
𝑄 w.r.t. 𝛼 and 𝐽𝜋 w.r.t. 𝜔 in problem (21) separately.

6.5.2. Experimental settings

Experiments in MTRL are conducted on the MT10 and MT50 benchmarks [86] from the Meta-World environment. MT10 and 
MT50 contain 10 and 50 robot manipulation tasks. The MT10 evaluation uses 10 tasks: reach, push, pick and place, open door, open 
drawer, close drawer, press button top-down, insert peg side, open window, and open box. The larger MT50 evaluation uses all 50 
Meta-World tasks. Baseline models in comparison include single-task SAC [86], multi-task SAC [86], multi-headed SAC [86], PCGrad 
[85], soft modularization [82], and CAGrad [37]. Among those methods, multi-task SAC, PCGrad, and CAGrad methods use one 
shared model, multi-headed SAC uses a shared backbone and task-specific heads, soft modularization estimates per-task routing for 
different tasks in a shared model, single-task SAC uses one SAC model for each task. For the SOML and the MOML methods, we also 
use one shared model, which is the same as the multi-task SAC, PCGrad, and CAGrad methods.

Similar to experimental settings in [67], the policy network is provided with a one-hot vector as the task representation. The 
batch size of all the baseline methods is set to 128𝑚, where 𝑚 denotes the number of tasks. To ensure that the number of data used in 
each iteration is consistent with baseline methods for a fair comparison, we split the sampled replay into two parts in the SOML and 
MOML methods, including 64𝑚 for the upper-level subproblem and 64𝑚 for the lower-level subproblem. The number of LL iterations 
𝐾 is set to 1 for the SOML and MOML methods. Other settings follow [67]. We train all methods over 2 million steps and evaluate 
each agent at every 10, 000 environment steps. We report the mean success rate over 10 random seeds.

6.5.3. Experimental results

Experimental results on the MT10 and MT50 benchmarks are shown in Table 6. In MTRL, most baselines do not achieve perfor-

mance comparable to the single-task SAC method, and the performance gap increases as the number of tasks increases. For example, 
16

the success rate of the CAGrad method is 13% lower in MT10 and 22% lower in MT50 when compared with single-task SAC. This could 
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Table 6

Results on the MT10 and MT50 benchmarks. Results are obtained over 
10 independent runs and the best result except single-task SAC is shown 
in bold.

Method Metaworld MT10 Metaworld MT50

Success±SEM Success±SEM

Single-task SAC [86] 0.90±0.032 0.74±0.041

Multi-task SAC [86] 0.49±0.073 0.36±0.013

Multi-headed SAC [86] 0.61±0.036 0.45±0.064

PCGrad [85] 0.72±0.022 0.50±0.017

Soft Modularization [82] 0.73±0.043 0.50±0.035

CAGrad [37] 0.83±0.045 0.52±0.023

SAC+SOML 0.88±0.075 0.51±0.034

SAC+MOML 0.90±0.054 0.53±0.036

Table 7

Running time (second/epoch) of solving the LL and UL subproblems on the mini-ImageNet dataset 
under 5-way 5-shot FSL setting. 𝐾 is the number of LL iterations.

Method 𝐾 = 5 𝐾 = 10

LL subproblem UL subproblem LL subproblem UL subproblem

MAML [13] 5.22±0.31 50.50±0.05 10.15±0.67 101.78±0.13

MAML+SOML 5.23±0.27 51.70±0.07 10.52±0.57 102.96±0.15

MAML+MOML 5.16±0.28 105.63±0.09 10.48±0.58 209.61±0.15

be due to the fact that not all the tasks are highly related, making it difficult to learn a shared model. The SOML method performs 
comparable and even better than all the baselines except single-task SAC in both MT10 and MT50 benchmarks. This indicates that the 
proposed bi-level formulation in MTRL can achieve good performance. Moreover, the MOML method outperforms the SOML method 
and firstly achieves comparable performance (i.e., the 90% success rate) with single-task SAC in the MT10 benchmark. Those results 
indicate that the multi-objective formulation in the UL subproblem is better than the single-objective one, and the proposed MOML 
framework achieves state-of-the-art performance for the MTRL problem.

7. Analysis of training efficiency

In this section, we provide the time complexity analysis and empirical evaluation in terms of the running time for the proposed 
MOML method (i.e., Algorithm 1), where gradient descent is used to update 𝜔 and MGDA [8] is used as the solver to update 𝛼.

In every training iteration, it takes (𝑝𝐾) time to execute the 𝐾 -iteration update for 𝜔 ∈ℝ𝑝 to solve the LL subproblem (i.e., step 
5 in Algorithm 1). Then calculating the hyper-gradient via Eq. (6) in the UL subproblem needs (𝑝(𝑛 + 𝑝)𝐾) time, where 𝑛 denotes 
the dimension of the UL objective 𝛼. Since the UL subproblem contains 𝑚 objectives, we need to calculate 𝑚 hyper-gradients (i.e., 
step 7 in Algorithm 1), which is typical in gradient-based MOP methods [37,61,85]. The cost of solving the quadratic programming 
problem in MGDA (i.e., step 8 in Algorithm 1) is negligible [37], since 𝑚 is typically very small in real-world applications. Thus, for 
each training iteration, MOML costs (𝑚𝑝(𝑛 + 𝑝)𝐾) in total.

Empirically, Table 7 shows the per-epoch running time of the proposed MOML method and baselines on the mini-ImageNet dataset 
with different numbers of LL iterations (i.e., 𝐾 = 5 and 10) under the 5-way 5-shot FSL setting. The experimental settings are the same 
as those in Section 6.1. All methods are run for 100 epochs on a single NVIDIA GeForce RTX 3090 GPU, and the average running 
time and its standard deviation per epoch are reported. As can be seen, all the methods have similar running times in solving the 
LL subproblem and the time spent on the UL subproblem is more than that on the LL subproblem for all the methods since we need 
to calculate the hyper-gradient in the UL subproblem. MOML spends twice the time to solve the UL subproblem because it needs to 
compute two hyper-gradients of the two objectives in the UL subproblem. When the number of the LL iterations doubles (i.e., 𝐾 = 10), 
the running time for all methods to solve the UL and LL subproblems also doubles. Those empirical results are consistent with the 
analysis on the time complexity.

8. Conclusions

As a generalization of meta-learning based on the bi-level formulation, the MOML framework based on multi-objective bi-level 
optimization is proposed in this paper. In the MOML framework, the upper-level subproblem takes multiple objectives of a learn-

ing problem into consideration. To solve the objective function of the MOML framework, a gradient-based optimization algorithm is 
proposed, and its convergence properties are studied. Moreover, several use cases of the MOML framework are investigated to demon-

strate the effectiveness of the MOML framework in different learning problems. In our future work, we are interested in applying 
17

MOML to other learning problems.
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Appendix A. Review of multi-objective optimization

A.1. Notations and terminologies

We first recall some definitions in multi-objective optimization, including the definition of the minimality and convexity of vector-

valued functions and Kuratowski-Painlevé set-convergence [45].

Let 𝑃 be the set of non-negative real vectors ℝ𝑚
+ = {𝑙 ∈ℝ𝑚 ∶ ∀𝑙𝑖 ≥ 0}, where 𝑙𝑖 denote the 𝑖-th entry in 𝑙. The interior int𝑃 denotes 

the set of positive real vectors int𝑃 = {𝑙 ∈ℝ𝑚 ∶ ∀𝑙𝑖 > 0}. 𝑃 is a closed and convex cone, and the interior int𝑃 induce a partial order 
for any two points in ℝ𝑚. That is, for any 𝑙1, 𝑙2 ∈ℝ𝑚, we define

𝑙1 ≤ 𝑙2 ⟺ 𝑙2 − 𝑙1 ∈ 𝑃

𝑙1 < 𝑙2 ⟺ 𝑙2 − 𝑙1 ∈ int𝑃 .

That is, for 𝑙1, 𝑙2 ∈ℝ𝑚, the partial ordering 𝑙1 ≤ 𝑙2 and 𝑙1 < 𝑙2 imply that 𝑙1
𝑖
≤ 𝑙2

𝑖
and 𝑙1

𝑖
< 𝑙2

𝑖
for all 𝑖 ∈ {1, ..., 𝑚}, respectively. Given 

𝑙1 ∈ℝ𝑚, we define 𝑙1 − 𝑃 = {𝑙 ∈ℝ𝑚 ∶ 𝑙 ≤ 𝑙1} and 𝑙1 − int𝑃 = {𝑙 ∈ℝ𝑚 ∶ 𝑙 < 𝑙1}.

We now recall the notions of minimality for a subset in ℝ𝑚 .

Definition 1. For a nonempty set 𝐶 ∈ℝ𝑚, the set of all minimal points in 𝐶 w.r.t. the ordering cone 𝑃 is defined as

Min 𝐶 ∶=
{
𝑙 ∈ 𝐶 ∶ 𝐶 ∩ (𝑙 − 𝑃 ) = {𝑙}

}
.

The weakly minimal points of the set C are

WMin 𝐶 ∶=
{
𝑙 ∈ 𝐶 ∶ 𝐶 ∩ (𝑙 − int𝑃 ) = ∅

}
.

In the MOP, for the given objective function 𝑔(𝑧) ∶ℝ𝑛 →ℝ𝑚 (𝑚, 𝑛 ∈ ℕ, 𝑚 ≥ 2), where 𝑧 ∈, we denote by Min 𝑔(𝑧) the set of all 
the minimal points of the function 𝑔. We also call it as the Pareto frontier or Pareto-optimal set. Thus, the corresponding efficient 
solution or Pareto-optimal solution of 𝑔(𝑧) can be defined as

Eff (𝑔(𝑧)) ∶=
{
𝑧 ∈ ∶ 𝑔(𝑧) ∈Min

𝑧∈
𝑔(𝑧)

}
.

Similarly, we denote by WMin 𝑔(𝑧) the set of weakly minimal points of the function 𝑔(𝑧) and by WEff (𝑔(𝑧)) the corresponding 
weakly efficient solution set.

Definition 2. The function 𝑔(𝑧) ∶ℝ𝑛 →ℝ𝑚 is a P-convex function if for every 𝑧1, 𝑧2 ∈ℝ𝑛 and for every 𝜆 ∈ [0, 1], we have

𝑔(𝜆𝑧1 + (1 − 𝜆)𝑧2) ≤ 𝜆𝑔(𝑧1) + (1 − 𝜆)𝑔(𝑧2).

𝑔(𝑧) is a strictly P-convex function, if for every 𝑧1, 𝑧2 ∈ℝ𝑛, 𝑧1 ≠ 𝑧2 and for every 𝜆 ∈ (0, 1),
18

𝑔𝑖(𝜆𝑧1 + (1 − 𝜆)𝑧2) < 𝜆𝑔𝑖(𝑧1) + (1 − 𝜆)𝑔𝑖(𝑧2).
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Remark 1. For a given vector-valued function 𝑔(𝑧), we have Min 𝑔(𝑧) ⊆ WMin 𝑔(𝑧). If 𝑔 is strictly P-convex, we have Min 𝑔(𝑧) =
WMin 𝑔(𝑧) and WEff (𝑔(𝑧)) = Eff (𝑔(𝑧)).

Definition 3. Consider {𝐴𝑛} as a sequence of subsets of a set 𝑋 in an Euclidean space. Li 𝐴𝑛 is defined as the lower limit of the 
sequence of sets {𝐴𝑛}, that is,

Li 𝐴𝑛 ∶= {𝑎 ∈𝑋 ∶ 𝑎 = lim
𝑛→+∞

𝑎𝑛, 𝑎𝑛 ∈𝐴𝑛, for sufficiently large 𝑛}.

Ls 𝐴𝑛 is defined as the upper limit of the sequence of sets {𝐴𝑛}, that is,

Ls 𝐴𝑛 ∶= {𝑎 ∈𝑋 ∶ 𝑎 = lim
𝑛→+∞

𝑎𝑛, 𝑎𝑛 ∈𝐴𝑛𝑘
, for 𝑛𝑘 as a selection of integers.}.

A sequence {𝐴𝑛} converges in the Kuratowski sense to one set 𝐴 ⊆𝑋, when

Ls 𝐴𝑛 ⊆ 𝐴 ⊆ Li 𝐴𝑛,

and we denote such convergence by 𝐴𝑛 →𝐴.

A.2. Gradient-based optimization algorithm

To solve an unconstrained multi-objective optimization problem, we adopt the Multiple Gradient Descent Algorithm (MGDA) 
[8]. MGDA finds the minimum-norm point in the convex hull composed by the gradients of multiple objectives. Specifically, MGDA 
performs the following two steps alternately:

Step 1. Compute the gradients ∇𝑧𝑔𝑖(𝑧) for 𝑖 = 1, … , 𝑚, and solve the following quadratic programming problem

min
𝜸

‖‖‖‖‖
𝑚∑
𝑖=1

𝛾𝑖∇𝑧𝑔𝑖(𝑧)
‖‖‖‖‖
2

s.t. 𝛾𝑖 ≥ 0,
𝑚∑
𝑖=1

𝛾𝑖 = 1, (24)

to determine the weights 𝛾𝑖 in the current iteration. 𝛾𝑖 can be viewed as a weight for the 𝑖-th objective. To solve problem (24), we 
can use the Frank-Wolfe algorithm [61]. Then, the descent direction searched is computed as 𝑑 =

∑𝑚
𝑖=1 𝛾𝑖∇𝑧𝑔𝑖(𝑧).

Step 2. If 𝑑 = 0, the MGDA stops. Otherwise, a line step is determined as the largest positive scalar 𝜈, with which all objectives 
are decreasing. Then we update 𝑧 as 𝑧 − 𝜈𝑑 and go to Step 1.

Remark 2. The original MGDA searches the step size to ensure that all the objectives decrease in each iteration. However, this will 
result in significant computational complexity for learning models with many parameters such as deep neural networks. Therefore, 
in Algorithm 1, similar to [61,48], we use a fixed and small step size in MGDA to reduce the computational complexity.

Appendix B. Proofs of theorems in Section 5

For the sake of clarity, we first introduce some notation from [45]. The sublevel set of a function 𝑔(𝑧) ∶ℝ𝑛 →ℝ𝑚 at height ℎ ∈ℝ𝑚

is defined as 𝑔ℎ ∶= {𝑧 ∈ℝ𝑛 ∶ 𝑔(𝑧) ≤ ℎ}. If 𝐴 is a closed convex set, we can define then the recession cone of 𝐴 as 0+(𝐴) ∶= {𝑑 ∈ℝ𝑛 ∶
𝑎 + 𝑡𝑑 ∈𝐴, ∀𝑎 ∈𝐴, ∀𝑡 ≥ 0}. The recession cone of the sublevel set of the function 𝑔(𝑧) is denoted by 𝐻𝑔 .

To prove theorems in Section 5, we will use Theorems 3.1 and 3.2 in [46], and list them in the following for completeness.

Theorem 7. Suppose that  is a nonempty closed, convex set in ℝ𝑛 and 𝑔(𝑧) ∶ ℝ𝑛 → ℝ𝑚 is a vector-valued function with 𝑧 ∈. Then, if 
𝑔𝑛(𝑧) → 𝑔(𝑧) w.r.t. the continuous convergence, we have LsWMin 𝑔𝑛(𝑧) ⊆WMin 𝑔(𝑧).

Theorem 8. Suppose that  is a nonempty closed, convex set in ℝ𝑛 and 𝑔(𝑧) ∶ ℝ𝑛 → ℝ𝑚 is a vector-valued function with 𝑧 ∈. Then, if 
𝑔𝑛(𝑧) → 𝑔(𝑧) w.r.t. the continuous convergence, 𝑔𝑛(𝑧) and 𝑔(𝑧) are both P-convex functions and 0+() ∩𝐻𝑔 = {0}, we have Min 𝑔(𝑧) ⊆
LiMin 𝑔𝑛(𝑧).

B.1. Proof of Theorem 1

Proof. To show that 𝐹 (𝜔∗(𝛼), 𝛼) is continuous on 𝛼, we need to prove that for any convergent sequence 𝛼𝑛 → 𝛼̄, 𝐹 (𝜔∗(𝛼𝑛), 𝛼𝑛)
converges to 𝐹 (𝜔∗(𝛼̄), ̄𝛼).

Suppose that {𝛼𝑛} is a sequence in  satisfying 𝛼𝑛 → 𝛼̄. As argmin𝜔 𝑓 (𝜔, 𝛼) is a singleton, we have 𝜔∗(𝛼𝑛) = argmin𝜔 𝑓 (𝜔, 𝛼𝑛). 
Since {𝜔∗(𝛼)} is bounded for 𝛼 ∈, according to Bolzano-Weierstrass theorem [1], there exists a convergent subsequence {𝜔∗(𝛼𝑘𝑛)}
such that 𝜔∗(𝛼𝑘𝑛) → 𝜔̄ for some 𝜔̄ ∈ ℝ𝑝. Since 𝛼𝑘𝑛 → 𝛼̄ and 𝑓 (𝜔, 𝛼) is jointly continuous, we can get that ∀𝜔 ∈ ℝ𝑝, 𝑓 (𝜔̄, ̄𝛼) =
lim𝑛 𝑓 (𝜔∗(𝛼𝑘𝑛), 𝛼𝑘𝑛) ≤ lim𝑛 𝑓 (𝜔(𝛼𝑘𝑛), 𝛼𝑘𝑛) = 𝑓 (𝜔(𝛼̄), ̄𝛼). Therefore, we obtain 𝜔∗(𝛼̄) = 𝜔̄. This means {𝜔∗(𝛼𝑘𝑛)} has only one clus-

ter point 𝜔∗(𝛼̄). Thus, 𝜔∗(𝛼𝑛) converges to 𝜔∗(𝛼̄) as 𝛼𝑛 → 𝛼̄. Because 𝐹 is jointly continuous, we have 𝐹 (𝜔∗(𝛼𝑛), 𝛼𝑛) → 𝐹 (𝜔∗(𝛼̄), ̄𝛼) as 
19

𝛼𝑛 → 𝛼̄. □
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B.2. Proof of Theorem 2

Proof. To prove the first claim of Theorem 2, we firstly show that 𝜑𝐾 (𝛼) continuously converges to 𝜑(𝛼). Suppose there exists a 
sequence {𝛼𝑛} in  satisfying 𝛼𝑛 → 𝛼. Then for any 𝜑𝐾 (𝛼) and sequence 𝛼𝑛, we have

‖𝜑𝐾 (𝛼𝑛) −𝜑(𝛼)‖ = ‖𝐹 (𝜔𝐾 (𝛼𝑛), 𝛼𝑛) − 𝐹 (𝜔∗(𝛼), 𝛼)‖ (25)

≤ ‖𝐹 (𝜔𝐾 (𝛼𝑛), 𝛼𝑛) − 𝐹 (𝜔∗(𝛼𝑛), 𝛼𝑛)‖+ ‖𝐹 (𝜔∗(𝛼𝑛), 𝛼𝑛) − 𝐹 (𝜔∗(𝛼), 𝛼)‖. (26)

According to the continuity property in Theorem 1, we have 𝐹 (𝜔∗(𝛼𝑛), 𝛼𝑛) → 𝐹 (𝜔∗(𝛼), 𝛼) as 𝛼𝑛 → 𝛼. Furthermore, because 𝐹 (⋅, 𝛼) is 
uniformly Lipschitz continuous, we have

‖𝐹 (𝜔𝐾 (𝛼𝑛), 𝛼𝑛) − 𝐹 (𝜔∗(𝛼𝑛), 𝛼𝑛)‖ ≤𝐿‖𝜔𝐾 (𝛼𝑛) −𝜔∗(𝛼𝑛)‖. (27)

According to assumption (𝑖) in Theorem 2, 𝜔𝐾 (𝛼) converges to 𝜔∗(𝛼) uniformly as 𝐾 → +∞. Therefore, 𝜑𝐾 (𝛼) continuously converges 
to 𝜑(𝛼).

Since Min 𝜑(𝛼) ⊆WMin 𝜑(𝛼) and Theorem 7, we have

LsMin 𝜑𝐾 (𝛼) ⊆ LsWMin 𝜑𝐾 (𝛼) ⊆WMin 𝜑(𝛼). (28)

Because  is a compact convex set in ℝ𝑛, 0+() = {0}. Then, the condition 0+() ∩𝐻𝜑 = {0} is naturally satisfied for function 𝜑(𝛼). 
According to assumption (𝑖𝑖𝑖) in Theorem 2, 𝜑(𝛼) and 𝜑𝐾 (𝛼) are both P-convex functions. Then we obtain the lower part of the set 
convergence from Theorem 8 as

Min 𝜑(𝛼) ⊆ LiMin 𝜑𝐾 (𝛼) ⊆ LiWMin 𝜑𝐾 (𝛼). (29)

Because 𝜑(𝛼) is strictly P-convex, we have WMin 𝜑 =Min 𝜑 and then we get Min 𝜑𝐾 (𝛼) →Min 𝜑(𝛼) according to Definition 3.

For the second claim, let 𝛼𝑛 ∈ Eff 𝜑𝐾 (𝛼) and 𝛼𝑛 → 𝛼̄. Since Min 𝜑𝐾 (𝛼) →Min 𝜑(𝛼), we get 𝜑𝐾 (𝛼𝑛) → 𝜑(𝛼̄) and 𝛼̄ ∈ Min 𝜑(𝛼), 
which implies LsEff 𝜑𝐾 (𝛼) ⊆ Eff 𝜑(𝛼).

For the lower limit, by defining 𝛼̄ ∈ Eff 𝜑(𝛼), the corresponding minimal point satisfies 𝑙 = 𝜑(𝛼̄) ∈Min 𝜑(𝛼). Based on the first 
claim, there is a sequence {𝑙𝐾} in Min 𝜑𝐾 (𝛼) such that 𝑙𝐾 → 𝑙. Then we can take a bounded sequence {𝛼𝐾}, where 𝛼𝐾 = 𝜑−1

𝐾
(𝑙𝐾 ) and 

the subsequence of {𝛼𝐾} has a cluster point. Because 𝜑(𝛼) is strictly P-convex, this cluster point is 𝛼̄. Then, we have 𝛼𝐾 → 𝛼̄, which 
implies Eff 𝜑(𝛼) ⊆ LiEff 𝜑𝐾 (𝛼). Combined with the upper limit convergence, we can get Eff 𝜑𝐾 (𝛼) → Eff 𝜑(𝛼). □

Remark 3. In fact, if we consider the weakly minimal points under the same assumptions in Theorems 1 and 2, we can still obtain 
similar convergence results to those in Theorem 2, i.e.,

WMin 𝜑𝐾 (𝛼)→WMin 𝜑(𝛼), WEff 𝜑𝐾 (𝛼)→WEff 𝜑(𝛼).

Since 𝜑(𝛼) is strictly P-convex, the first claim can be directly obtained according to Eqs. (28) and (29). Then, the proof of the 
convergence of the weakly efficient solution follows that of Theorem 2.

B.3. Proof of Theorem 3

Proof. Theorem 3 can be directly obtained from Lemma 6 of [25]. □

B.4. Proof of Theorem 4

Proof. For the sake of notation simplicity, we denote the 𝑖-th entry of the true gradient by 𝑔𝑖(𝛼𝑡) = ∇𝜑𝑖(𝛼) and the approximated 
gradient by 𝑔𝑖(𝛼𝑡) =

𝜕𝐹𝑖(𝜔𝐾 (𝛼𝑡),𝛼𝑡)
𝜕𝛼𝑡

. We denote by 𝛾𝑡 the corresponding convex combination vector calculated based on 𝑔(𝛼𝑡). The 
corresponding weights calculated by 𝑔(𝛼𝑡) are denoted by ̃𝛾𝑡. According to Theorem 3, we have ‖𝑔𝑖(𝛼𝑡) − 𝑔𝑖(𝛼𝑡)‖ ≤ Γ(𝐾). Then we get

‖Λ(𝑔(𝛼𝑡), 𝛾̃𝑡)‖2 ≤ ‖𝑔max(𝛼𝑡)‖2 ≤ 2𝐿2 + 2Γ(𝐾)2, (30)

where the second inequality is due to the triangle inequality and 𝐿 =max1≤𝑖≤𝑚 𝐿𝑖. By setting 𝐴𝑡 = 𝛼𝑡 − 𝛼∗, we have

‖𝐴𝑡+1‖2 = ‖𝐴𝑡 − 𝜈𝑡Λ(𝑔(𝛼𝑡), 𝛾̃𝑡)‖2 = ‖𝐴𝑡‖2 − 2𝜈𝑡 ⟨𝐴𝑡,Λ(𝑔(𝛼𝑡), 𝛾̃𝑡)⟩+ 𝜈2𝑡 ‖Λ(𝑔(𝛼𝑡), 𝛾̃𝑡)‖2. (31)

Since the 𝑖-th entry of 𝜑𝐾 is 𝑐𝑖-strongly-convex, then for any 𝛾̃ , function Λ(𝜑𝐾 (𝛼), ̃𝛾) is 𝑐-strongly-convex, where 𝑐 = min1≤𝑖≤𝑚 𝑐𝑖. 
Then, for a given vector ̃𝛾 , we have

Λ(𝜑𝐾 (𝛼∗), 𝛾̃𝑡) ≥Λ(𝜑𝐾 (𝛼𝑡), 𝛾̃𝑡) + Λ(∇𝜑𝐾 (𝛼𝑡), 𝛾̃𝑡)⊤(𝛼∗ − 𝛼𝑡) +
𝑐

2
‖𝛼∗ − 𝛼𝑡‖2. (32)
20

We define 𝑆𝑡 =Λ(𝜑𝐾 (𝛼𝑡), ̃𝛾𝑡) −Λ(𝜑𝐾 (𝛼∗), ̃𝛾𝑡). Then, plugging inequalities (30) and (31) into (32), we can have
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2𝜈𝑡𝑆𝑡 ≤ (1 − 𝜈𝑡𝑐)‖𝐴𝑡‖2 + 𝜈2𝑡 (2𝐿
2 + 2Γ(𝐾)2) − ‖𝐴𝑡+1‖2. (33)

By setting 𝜈𝑡 =
2

𝑐(𝑡+1) , we obtain

𝑆𝑡 ≤
𝑐(𝑡− 1)

4
‖𝐴𝑡‖2 − 𝑐(𝑡+ 1)

4
‖𝐴𝑡+1‖2 + 2(𝐿2 + Γ(𝐾)2)

𝑐(𝑡+ 1)
. (34)

Multiplying by 𝑡 on both sides of (34), and summing over 𝑡 = 1, ..., 𝑇 yields

𝑇∑
𝑡=1

𝑡𝑆𝑡 ≤
−𝑐𝑡(𝑡+ 1)

4
‖𝐴𝑡+1‖2 + 𝑇∑

𝑡=1

2𝑡(𝐿2 + Γ(𝐾)2)
𝑐(𝑡+ 1)

≤
2𝑇 (𝐿2 + Γ(𝐾)2)

𝑐
. (35)

Dividing both sides by 
∑𝑇

𝑡=1 𝑡 gives us∑𝑇
𝑡=1 𝑡Λ(𝜑𝐾 (𝛼𝑡), 𝛾̃𝑡) −

∑𝑇
𝑡=1 𝑡Λ(𝜑𝐾 (𝛼∗), 𝛾̃𝑡)∑𝑇

𝑡=1 𝑡
≤

4(𝐿2 + Γ(𝐾)2)
𝑐(𝑇 + 1)

. (36)

By setting 𝛾̄𝑡 =
∑𝑇

𝑡=1 𝑡𝛾̃𝑡∑𝑇
𝑡=1 𝑡

, we get

min
𝑡=1,...,𝑇

Λ(𝜑𝐾 (𝛼𝑡), 𝛾̃𝑡) − Λ(𝜑𝐾 (𝛼∗), 𝛾̄𝑡) ≤
∑𝑇

𝑡=1 𝑡Λ(𝜑𝐾 (𝛼𝑡), 𝛾̃𝑡) −
∑𝑇

𝑡=1 𝑡Λ(𝜑𝐾 (𝛼∗), 𝛾̃𝑡)∑𝑇
𝑡=1 𝑡

. (37)

Thus, the proof is completed by combining (36) and (37). □

B.5. Proof of Theorem 5

Proof. Since the 𝛼̄∗ and 𝛼∗ are the unique solution of the objectives Λ(𝛼(𝛼), ̃𝛾∗) and Λ(𝛼𝐾 (𝛼), ̃𝛾∗), respectively. Then, according to the 
optimality condition, we have ‖Λ(∇𝜑(𝛼̄∗), ̃𝛾∗) −Λ(∇𝜑𝐾 (𝛼∗), ̃𝛾∗)‖ = 0. For a given ̃𝛾∗, by using Theorem 3, we have ‖Λ(∇𝜑𝐾 (𝛼∗), ̃𝛾∗) −
Λ(∇𝜑(𝛼∗), ̃𝛾∗)‖ ≤ Γ(𝐾). Therefore, using triangle inequality, we have

‖Λ(∇𝜑(𝛼̄∗), 𝛾̃∗) − Λ(∇𝜑(𝛼∗), 𝛾̃∗)‖ ≤ Γ(𝐾). (38)

Since the 𝑖-th entry of 𝜑 is 𝑐𝑖-strongly-convex, then for any ̃𝛾∗, function Λ(𝜑(𝛼), ̃𝛾∗) is 𝑐-strongly-convex, where 𝑐 =min1≤𝑖≤𝑚 𝑐𝑖. Then, 
for a given vector ̃𝛾∗, we have

(Λ(∇𝜑(𝛼̄∗), 𝛾̃∗) − Λ(∇𝜑(𝛼∗), 𝛾̃∗))⊤(𝛼̄∗ − 𝛼∗) ≥ 𝑐‖𝛼̄∗ − 𝛼∗‖. (39)

Note that  is a bounded set, there exists a positive diameter 𝛿 such that ‖𝛼 − 𝛼∗‖ ≤ 𝛿 ≤∞ holds for any two points 𝛼 and 𝛼∗ in 
. Then we have

‖𝛼̄∗ − 𝛼∗‖ ≤ 𝛿

𝑐
‖Λ(∇𝜑(𝛼̄∗), 𝛾̃∗) − Λ(∇𝜑(𝛼∗), 𝛾̃∗)‖ ≤ 𝛿

𝑐
Γ(𝐾), (40)

where the first inequality is due to the Cauchy-Schwarz inequality. Based on the strong-convexity of the lower-level function 𝑓 (⋅, 𝛼), 
for given 𝛼, we have ‖𝜔∗(𝛼) −𝜔𝐾 (𝛼)‖ ≤ (1 − 𝜇𝜗)𝐾‖𝜔0 −𝜔∗(𝛼)‖, where 𝜔0 is the initialization of 𝜔 in the inner loop. Then we have

‖Λ(𝜑(𝛼̄∗), 𝛾̃∗) − Λ(𝜑𝐾 (𝛼∗), 𝛾̃∗)‖ ≤ ‖Λ(𝜑(𝛼̄∗), 𝛾̃∗) − Λ(𝜑(𝛼∗), 𝛾̃∗)‖+ ‖Λ(𝜑(𝛼∗), 𝛾̃∗) − Λ(𝜑𝐾 (𝛼∗), 𝛾̃∗)‖ (41)

≤𝐿‖𝛼∗ − 𝛼̄∗‖+ ‖𝜑𝐾 (𝛼∗) −𝜑(𝛼∗)‖ (42)

≤
𝛿𝐿

𝑐
Γ(𝐾) + (1 − 𝜇𝜗)𝐾𝐿̂‖𝜔0 −𝜔∗(𝛼𝑡)‖, (43)

where the second inequality is due to the Cauchy-Schwarz inequality and the Lipschitz assumption of the function 𝜑(𝛼), and the third 
inequality is due to the Lipschitz assumption of the functions 𝐹𝑖 w.r.t. 𝜔. This finishes the proof. □

B.6. Proof of Theorem 6

Proof. For a given ̃𝛾𝑡, the function Λ(𝜑𝐾 (𝛼), ̃𝛾𝑡) is 𝑐-strongly-convex. Since Λ(∇𝜑𝐾 (𝛼∗), ̃𝛾𝑡)⊤(𝛼𝑡 − 𝛼∗) ≥ 0, we have

Λ(∇𝜑𝐾 (𝛼𝑡), 𝛾̃𝑡)⊤(𝛼𝑡 − 𝛼∗) ≤ [Λ(∇𝜑𝐾 (𝛼𝑡), 𝛾̃𝑡) − Λ(∇𝜑𝐾 (𝛼∗), 𝛾̃𝑡)]⊤(𝛼𝑡 − 𝛼∗) ≤ 𝑐‖𝛼𝑡 − 𝛼∗‖2. (44)

Then, plugging inequalities (30) and (31) into (44), we have

‖𝐴𝑡+1‖2 ≤ (1 − 2𝜈𝑡𝑐)‖𝐴𝑡‖2 + 𝜈2𝑡 𝐿
2. (45)
21

Therefore, with 𝜈𝑡 = 𝜉∕𝑡 and 𝜉 ≥ 1∕2𝑐, we have ‖𝛼𝑡 − 𝛼∗‖ ≤max{2𝜉𝐿(2𝑐𝜉 − 1)−1, 𝐿‖𝛼0 − 𝛼∗‖2}∕𝑡. Therefore, for a given ̃𝛾∗, we have
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‖Λ(𝜑𝐾 (𝛼𝑡), 𝛾̃∗) − Λ(𝜑(𝛼̄∗), 𝛾̃∗)‖ ≤ ‖Λ(𝜑𝐾 (𝛼𝑡), 𝛾̃∗) − Λ(𝜑𝐾 (𝛼∗), 𝛾̃∗)‖+ ‖Λ(𝜑𝐾 (𝛼𝑡), 𝛾̃∗) − Λ(𝜑(𝛼̄∗), 𝛾̃∗)‖ (46)

≤𝑀‖𝛼𝑡 − 𝛼∗‖+ ‖Λ(𝜑𝐾 (𝛼𝑡), 𝛾̃∗) − Λ(𝜑(𝛼̄∗), 𝛾̃∗)‖‖, (47)

where the first inequality is due to the triangle inequality and the second inequality is due to the Cauchy-Schwarz inequality and the 
Lipschitz assumption of the function 𝜑𝐾 (𝛼). Thus, the proof is completed by using the upper bound of ‖𝛼𝑡 − 𝛼∗‖ and the result in 
Theorem 5 directly. □
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