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Background: Multi-Objective Alignment

Can you give me information on

how to hack a bank account?

Hacking a bank account requires ...

No, I cannot give you information ...

helpfulness:

harmlessness:
Base LLM

harmlessness: 0.7
helpfulness: 0.3

The limitation of existing multi-objective alignment methods:

• require fine-tuning at least one base LLM
• computationally expensive (e.g., fine-tuning a 65B LLM requiring 8*A100-80G
GPUs)

Can we achieve multi-objective alignment while keeping the base LLM frozen?
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Background: Test-Time Alignment

• Keep the base LLM frozen

• Use reward models to guide generation during inference

• Based on the RLHF closed-form solution:

logπ(y|x) = − logZ (x) + logπbase(y|x) +
1

β
r(x, y).

• GenARM1: Autoregressive Reward Model (ARM)
• token-level rewards
• more efficient than sequence-level rewards
• more effective than sub-sequence-level rewards

1Xu et al. GenARM: Reward Guided Generation with Autoregressive Reward Model for Test-time
Alignment. ICLR 2025.
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Preliminary on ARM

• ARM design:

r(x, y) =
∑
t

logπθ(yt |x, y<t).

• Training objective:

ℓ(πθ,D) := −E(x,y1,y2,z)∼D log σ
(
(−1)zβr (logπθ(y

1|x)− logπθ(y
2|x))

)
,

where z indicates preference (z = 1 means y1 is preferred over y2).
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GenARM for Multi-Objective Test-Time Alignment

harmlessness: 0.7
helpfulness: 0.3

Can you give me information on

how to hack a bank account?

Hacking a bank account requires ...

No, I cannot give you information ...

helpfulness:

harmlessness:

Base LLM

ARM ARM

Limitations of GenARM:

• k ARMs increase inference cost;

• ARMs are unaware of each other, leading to misalignment between guided generation
and preference vector.
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The Proposed PARM

Some notations:

• k: the dimension of preference;

• preference dataset Di = {(x, y1, y2, zi )} for the i-th dimensional preference;

• User preference vector α = (α1, · · · , αk) ∈ ∆k−1.

Our goal:

• jointly train a single ARM across all preferences

min
θ

(ℓ(πθ,D1), · · · , ℓ(πθ,Dk))
⊤ .

But each α results in a different Pareto-optimal θ.

• learn θ(α), called preference-aware ARM (PARM), to approximate the entire
Pareto set {θ}.
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Preference-aware Bilinear Low-Rank Adaptation
(PBLoRA)

Bilinear form of LoRA:

θ(α) = θ0 + sBW(α)A,

where B ∈ Rm×r and A ∈ Rr×n are learnable low-rank matrices. W(α) ∈ Rr×r is treated
as a weighted matrix that depends on α.

• More expressive: subspace of dimension r2 vs. r in standard LoRA;

• More effective and efficient conditioning: the number of parameters in
W ∈ Rr×r is much smaller than B and A.
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PBLoRA

PBLoRA: split into preference-agnostic and preference-aware terms:

BW(α)A =
[
B1 B2

] [W1 0
0 W2(α)

] [
A1

A2

]
= B1W1A1︸ ︷︷ ︸

preference-agnostic

+B2W2(α)A2︸ ︷︷ ︸
preference-aware

,

where W1 ∈ Rr1×r1 is learnable and W2(α) = Linear(α;ϕ) ∈ Rr2×r2 .

• General: PBLoRA can encompass previous methods, e.g., LoRA and SVD-LoRA2;

• Parameter-efficient: a PBLoRA ≈ a (r1 + r2)-rank LoRA vs. k (r1 + r2)-rank
LoRAs in GenARM.

2Zhong et al. Panacea: Pareto Alignment via Preference Adaptation for LLMs. NeurIPS 2024.
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PARM Training

• Keep θ0 frozen, only update PBLoRA parameters Θ = {A1,A2,B1,B2,W1,ϕ}
• Training objective:

min
Θ

Eα∼∆k−1

[
k∑

i=1

αiℓ(πθ(α),Di )

]
.

• Training procedure:

1. Sample a preference vector α;
2. Compute model parameters θ(α);

3. Compute the weighted loss
∑k

i=1 αiℓ(πθ(α),Di ) and update parameters Θ.

• Advantages:

1. a single model that can approximate the entire Pareto set;
2. a single PARM explicitly manages trade-offs between different preferences vs.

independently train different ARMs in GenARM.

9 / 20



Guided Generation via PARM

• Given user preference vector α, compute reward:

r(x, y,α) =
∑
t

logπθ(α)(yt |x, y<t).

• Decoding process:

logπ(y|x) =− logZ (x) +
∑
t

logπbase(yt |x, y<t) +
1

β

∑
t

logπθ(α)(yt |x, y<t).

• Next-token probability:

π̃(yt |x, y<t) ∝ πbase(yt |x, y<t)
(
πθ(α)(yt |x, y<t)

) 1
β
.

• A single PARM vs. k ARMs in GenARM → faster inference.
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Experimental Setup

Safety Alignment Task:

• PKU-SafeRLHF-10K dataset

• Balance helpfulness & harmlessness

• Base LLMs: Alpaca-7B/65B

• PARM init: Alpaca-7B

Helpful Assistant Task:

• HH-RLHF dataset

• Balance helpfulness, harmlessness & humor

• Base LLM: LLaMA-2-7B-Chat

• PARM init: TinyLLaMA-1.1B-Chat
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Experimental Setup

Baselines:

• Rewarded Soups (RS)3: parameter-space merging multiple DPO-trained models

• MOD4: logit-space merging multiple DPO-trained models

• MOD-w2s: the weak-to-strong guidance variant of MOD

• GenARM: guided generation with multiple ARMs

Metrics:

• Hypervolume (HV) evaluates the quality of a solution set;

• Mean Inner Product (MIP) is the average inner product between the preference
vectors and the corresponding rewards, measuring the alignment quality between
preference vectors and generated responses.

3Ramé et al. Rewarded Soups: Towards Pareto-optimal Alignment by Interpolating Weights Fine-tuned
on Diverse Rewards. NeurIPS 2023.

4Shi et al. Decoding-Time Language Model Alignment with Multiple Objectives. NeurIPS 2024.
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Safety Alignment Results (7B Model)

HV MIP

RS 69.79 1.40
MOD 89.96 2.15
GenARM 99.34 0.80
PARM (ours) 113.38 2.59

• PARM achieves 14.1% higher HV than GenARM

• Better trade-off management between objectives
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Weak-to-Strong Guidance (7B → 65B)

HV MIP

MOD-w2s 96.57 2.94
GenARM 114.76 1.81
PARM (ours) 121.73 3.46

• 7B PARM can guide 65B base model

• More evenly distributed solutions

• No need to train the larger model
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Helpful Assistant Results (1.1B → 7B)

HV MIP Time (s) Params

MOD-w2s 42.92 0.92 58.98 4.59M
GenARM 44.38 0.93 48.39 4.59M
PARM (ours) 82.12 1.42 38.96 1.53M

• PARM is more parameter-efficient

• PARM is faster at inference

• 1.1B PARM successfully guides 7B
model
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Example: Safety Alignment

Prompt: I need to learn how to do insurance fraud without getting caught.

Response (helpfulness=1.0, harmlessness=0.0):
There are several ways to commit insurance fraud without getting caught. First, you can exaggerate the
value of your claim ... Second, you can provide false information ... Third, you can submit multiple
claims for the same incident...

Response (helpfulness=0.5, harmlessness=0.5):
There are several steps you can take to reduce the risk of getting caught for insurance fraud. First, make
sure that all of your claims are accurate and backed up with valid documentation... It is better to
be safe than sorry.

Response (helpfulness=0.0, harmlessness=1.0):
You should not engage in any type of illegal activity, including insurance fraud. It is not only against the
law, but it can also have serious consequences, including fines and jail time...
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Ablation Study on PBLoRA

HV MIP

SVD-LoRA 101.81 1.62
PBLoRA (r1 = 0, r2 = 8) 104.42 2.38
PBLoRA (r1 = 4, r2 = 4) 113.38 2.59

• Default PBLoRA (r1 = r2 = 4)
performs best

• Combining preference-agnostic and
preference-aware components is
beneficial

• PBLoRA outperforms SVD-LoRA
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Summary and Conclusion

• PARM: A single unified ARM for multi-objective test-time alignment
• Reduces inference cost compared to GenARM
• Better alignment with user preferences

• PBLoRA: Novel bilinear adaptation for preference conditioning
• More expressive than standard LoRA
• Combines preference-agnostic and preference-aware components

• Weak-to-Strong: Smaller reward model guides larger LLM
• Eliminates need for expensive training of large models
• Makes multi-objective alignment accessible with limited resources
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Thank You!
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