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Multi-task learning aims to learn multiple related tasks simultaneously and has achieved great success in various
fields. However, the disparity in loss and gradient scales among tasks often leads to performance compromises,
and the balancing of tasks remains a significant challenge. In this paper, we propose Dual-Balancing Multi-
Task Learning (DB-MTL) to achieve task balancing from both the loss and gradient perspectives. Specifically,
DB-MTL achieves loss-scale balancing by performing logarithm transformation on each task loss, and rescales
gradient magnitudes by normalizing all task gradients to comparable magnitudes using the maximum gradient
norm. Extensive experiments on a number of benchmark datasets demonstrate that DB-MTL consistently performs

better than the current state-of-the-art.

1. Introduction

Multi-task learning (MTL) (Caruana, 1997; Chen et al., 2025; Zhang
& Yang, 2022) jointly learns multiple related tasks using a single model,
improving parameter-efficiency and inference speed compared to learn-
ing a separate model for each task. By sharing the model, MTL can ex-
tract common knowledge to improve each task’s performance. It has
demonstrated its superiority in various fields, such as computer vision
(Lin et al., 2025, 2024; Luo et al., 2025; Vandenhende et al., 2021; Ye
& Xu, 2022), natural language processing (Chen et al., 2024; Liu et al.,
2017, 2019b; Sun et al., 2020; Wang et al., 2021), and recommendation
systems (Hazimeh et al., 2021; Tang et al., 2020; Wang et al., 2023; Yi
et al., 2025).

To learn multiple tasks simultaneously, equal weighting (EW) (Zhang
& Yang, 2022) is a straightforward method that minimizes the sum of
task losses with equal task weights. However, it usually suffers from the
challenging task balancing problem (Lin et al., 2022; Vandenhende et al.,
2021), in which some tasks perform well while others do not (Stand-
ley et al., 2020). To alleviate this problem, a number of methods have
been recently proposed by dynamically tuning the task weights. They
can be categorized as loss balancing (Kendall et al., 2018; Liu et al.,
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2022,2019a; Ye et al., 2024a, 2021, 2024b) and gradient balancing (Chen
et al., 2018b, 2020; Fernando et al., 2023; Liu et al., 2021a,b; Navon
et al., 2022; Sener & Koltun, 2018; Wang et al., 2021; Yu et al., 2020).
Loss balancing methods balance the tasks based on the learning speed
(Liu et al., 2019a) or validation performance (Liu et al., 2022; Ye et al.,
2024a, 2021) at the loss level, while gradient balancing methods balance
the gradients by mitigating gradient conflicts (Yu et al., 2020) or enforc-
ing gradient norms to be close (Chen et al., 2018b) at the gradient level.
However, recently, multiple extensive empirical studies (Kurin et al.,
2022; Lin et al., 2022; Xin et al., 2022) demonstrate that the perfor-
mance of these existing methods is still unsatisfactory, indicating that
task balancing is still an open problem.

To mitigate the task balancing problem, in this paper, we consider
simultaneously balancing both the loss scales (at the loss level) and gra-
dient magnitudes (at the gradient level). Since the loss scales/gradient
magnitudes among tasks can be different, those with large values can
dominate the update direction of the model, causing unsatisfactory per-
formance on some other tasks (Liu et al., 2021b; Standley et al., 2020).
Therefore, we propose a simple yet effective Dual-Balancing Multi-Task
Learning (DB-MTL) method that consists of both loss-scale and gradient-
magnitude balancing. First, we perform a logarithm transformation on
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each task loss to make all task losses have a similar scale. This is non-
parametric and can recover the loss transformation in IMTL-L (Liu et al.,
2021b). We find that the logarithm transformation also benefits existing
gradient balancing methods. Second, we normalize all task gradients to
the same magnitude as the maximum gradient norm. This is training-
free and guarantees all gradients’ magnitude are the same compared
with GradNorm (Chen et al., 2018b). Empirically, we find that the mag-
nitude of normalized gradients plays an important role in performance,
and setting it as the maximum gradient norm among tasks performs the
best. Extensive experiments are performed on a number of benchmark
datasets. Results demonstrate that DB-MTL consistently outperforms the
current state-of-the-art.
Our contributions can be summarized as follows:

1. We propose DB-MTL, a novel dual-balancing approach that simul-
taneously addresses both loss-scale and gradient-magnitude imbal-
ances in multi-task learning through:

o A parameter-free logarithm transformation for loss-scale balanc-
ing that effectively equalizes loss scales across tasks;

¢ A maximum-norm gradient normalization strategy that rescales
all task gradients to comparable magnitudes for balanced model
updates.

2. We conduct extensive experiments across diverse benchmarks
demonstrating that DB-MTL consistently outperforms state-of-the-art
MTL methods.

Notations. For clarity, we summarize the key notations used throughout
this paper. We use T to denote the number of tasks, D, for the training
dataset of task ¢, 0 and {y, }¢T= | for task-sharing and task-specific param-
eters respectively, y, for task weights, and ¢, for the loss function of task
t. g, and g, represent the gradient and aggregated gradient at iteration
k, with «, as the scaling factor.

2. Related works

In an MTL problem with T tasks, we aim to learn a model from
{D,}T:], where D, is the training dataset of task 7. The MTL model pa-
rameters can be divided into two parts: (i) task-sharing parameter 6,
and (ii) task-specific parameters {q/,}tT= . For example, in computer vi-
sion tasks, 0 usually represents a feature encoder (e.g., ResNet (He et al.,
2016)) to extract common features among tasks, while y, corresponds
to the task-specific output module (e.g., a fully-connected layer). For pa-
rameter efficiency, 6 contains most of the MTL model parameters, and
is crucial to the performance.

Let #,(D;; 0, y,) be the loss on task ¢’s data D, using parameter (6, y,).
The training objective of MTL is ZLI 7.¢(D;; 0,y,), where y, is the
weight for task ¢. Equal weighting (EW) (Zhang & Yang, 2022) is a simple
MTL approach that sets y, = 1 for all tasks. However, EW usually suffers
from the task balancing problem in which some tasks have unsatisfac-
tory performance (Standley et al., 2020). To improve its performance,
many other MTL methods have been proposed to dynamically tune the
task weights {7, }’_T=I during training. They can be categorized as loss bal-
ancing, gradient balancing, or hybrid balancing.

2.1. Loss balancing methods

This approach weights the task losses with {y, }I.T=1 that are computed
dynamically. {y, }[T: affect the update of both the task-sharing parameter
0 and task-specific parameter {w,}f:l. They can be set based on mea-
sures such as homoscedastic uncertainty (Kendall et al., 2018), learn-
ing speed (Liu et al., 2019a), validation performance (Ye et al., 2024a,
2021), and improvable gap (Dai et al., 2023). Alternatively, IMTL-L (Liu
etal., 2021b) encourages the weighted losses {y,7,(D,; 6, y/,)},T:] to have
similar loss scale across all tasks by transforming each loss #,(D,; 6, y,)
as e*¢,(D,;0,y,) — s, where {s,}rT:] are learnable parameters and ob-
tained by gradient descent at each iteration.
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2.2. Gradient balancing methods

The update of the task-sharing parameter 6 depends on all task gra-
dients {VyZ,(D,;0,y,) }[T=1. Thus, gradient balancing methods aim to ag-
gregate all task gradients in different manners. For example, MGDA
(Sener & Koltun, 2018) formulates MTL as a multi-objective optimiza-
tion problem and selects the aggregated gradient with the minimum
norm (Désidéri, 2012). CAGrad (Liu et al., 2021a) improves MGDA by
constraining the aggregated gradient to be around the average gradient.
MoCo (Fernando et al., 2023) mitigates the bias in MGDA by introduc-
ing a momentum-like gradient estimate and a regularization term. Grad-
Norm (Chen et al., 2018b) learns task weights to scale the task gradients
to similar magnitudes. PCGrad (Yu et al., 2020) projects the gradient of
one task onto the normal plane of the other if their gradients conflict.
GradVac (Wang et al., 2021) aligns the gradients regardless of whether
the gradients conflict or not. GradDrop (Chen et al., 2020) randomly
masks out gradient values with inconsistent signs. IMTL-G (Liu et al.,
2021b) learns task weights to enforce the aggregated gradient to have
equal projections on each task gradient. Nash-MTL (Navon et al., 2022)
formulates gradient aggregation as a Nash bargaining game.

For most gradient balancing methods (such as PCGrad (Yu et al.,
2020), CAGrad (Liu et al., 2021a), MoCo (Fernando et al., 2023), Grad-
Drop (Chen et al., 2020), and IMTL-G (Liu et al., 2021b)), the task
weight y, only affects update of the task-sharing parameter 6, while in
some other gradient balancing methods (such as MGDA (Sener & Koltun,
2018), GradNorm (Chen et al., 2018b), and Nash-MTL (Navon et al.,
2022)), the task weight y, affects the update of both the task-sharing
and task-specific parameters.

2.3. Hybrid balancing methods

As loss balancing and gradient balancing are complementary, these
two types of methods can be combined to achieve better performance.
In this approach, the task weight y, is obtained as the product of the
loss and gradient balancing weights. For example, the first hybrid bal-
ancing method IMTL (Liu et al., 2021b) combines IMTL-L with IMTL-G.
Subsequently, various combinations (Dai et al., 2023; Lin et al., 2022;
Liu et al., 2022) of loss/gradient balancing methods demonstrate perfor-
mance improvements. In this paper, we propose DB-MTL that combines
the logarithm transformation (for loss balancing) and the maximum-
norm gradient normalization (for gradient balancing).

3. Proposed method

In this section, we alleviate the task balancing problem from both
the loss and gradient perspectives. First, we balance all loss scales by
performing logarithm transformation on each task’s loss (Section 3.1).
Next, we achieve gradient-magnitude balancing by normalizing each
task’s gradient to the same magnitude as the maximum gradient norm
(Section 3.2). The procedure, called DB-MTL (Dual-Balancing Multi-
Task Learning), is shown in Algorithm 1.

3.1. Scale-balancing loss transformation

Tasks with different types of loss functions usually have different
scales, leading to the task balancing problem. For example, in the NYUv2
dataset (Silberman et al., 2012), the cross-entropy loss, L, loss, and co-
sine loss are used as the loss functions of the semantic segmentation,
depth estimation, and surface normal prediction tasks, respectively. As
observed in Navon et al. (2022), Standley et al. (2020), Yu et al. (2020)
and also in our experimental results in Tables 1 and 6, surface normal
prediction is affected by the other two tasks (semantic segmentation and
depth estimation), causing MTL methods like EW to perform unsatisfac-
torily.

When prior knowledge of the loss scales is available, we can choose
{57}, such that {s}7,(D;6,y,)} have the same scale, and then
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Algorithm 1 Dual-balancing multi-task learning.

Require: numbers of iterations K, learning rate 5, tasks { Dr};T:w €=
1078, B;

1: randomly initialize 6o, {y,o}"_;

2: initialize & _, =0, for all ;

3: fork=0,...,K—-1do

4: fort=1,...,T do

5: sample a mini-batch dataset 13, from D,;

6: 8k = Vo, 108, (B O w1 4) + €);

7: compute gt,k = ﬂgt,k—l +(1- ﬂ)gt,k;

8: end for .

9:  compute g, =a; Y, ugjﬁ’ where a; = max; ¢, |14 l2;
10: update task-sharing parameter by 0, = 0, — 58,;
11: fort=1,...,T do
12: Vikt1 = Wk = MVy,, 108 (By 3 0, W, 1) + €);

13: end for
14: end for
15: Return 9k,{w,,z<},T=l-

minimize the total loss Z,T= 57 ¢(Dy; 6, ). Previous methods (Kendall
et al., 2018; Liu et al., 2021b, 2019a; Ye et al., 2021) implicitly learn
{s;}L | when learning the task weights {y,}” . However, obviously the
optimal {s* }rT:1 cannot be obtained during training.

Without the availability of {s }rT=1’ the logarithm transformation
can be used to alleviate the loss scale problem. Specifically, we trans-
form each task’s loss Z,(D,; 0, y,) to log #,(D,; 6, y,), and then minimize
ZT:] log 7,(D,; 6, y,). Since log(-) can compress the range of its input, it
can reduce the loss scale gap between different tasks.

IMTL-L (Liu et al., 2021b) tackles the loss scale issue using a trans-
formed loss e* ¢,(D;; 0, y,) — s;, where s, is a learnable parameter for the
t-th task and approximately solved by one-step gradient descent at every
iteration. The following Proposition 1 shows that IMTL-L is equivalent
to the logarithm transformation when s, is the exact minimizer in each

iteration.
Proposition 1. For x > 0, log(x) = min, e’x — s — 1.

Proof. Define an auxiliary function f(s)=e'x—s—1. It is easy to
show that & — ¢sx — 1 and dz%g‘) =e*x > 0. Thus, f(s) is convex. By
the first-order optimal condition (Boyd & Vandenberghe, 2004), let
e x—1=0, the global minimizer is solved as s* = —log(x). Therefore,
fs*) = e x —s* — 1 = e~ 1°8Wx ¢ log(x) — 1 = log(x), where we finish
the proof. O

Compared to IMTL-L, the logarithm transformation does not require
additional parameters and computational cost during training. Thus, the
logarithm transformation is simpler and more effective than IMTL-L.

3.2. Magnitude-balancing gradient normalization

In addition to the task losses, task gradients also suffer from the scale
issue. As the update direction of 6 is obtained by uniformly averaging all
task gradients, it may be dominated by the large task gradients, causing
sub-optimal performance (Liu et al., 2021a; Yu et al., 2020).

A simple approach is to normalize task gradients to the same
magnitude. As computing the batch gradient is computationally ex-
pensive, mini-batch stochastic gradient descent is often used in prac-
tice. Specifically, at iteration k, we sample a mini-batch B,, from
D, for the t-th task (step 5 in Algorithm 1) and compute the mini-
batch gradient g,, = Vg, log?, (B ;0. W) (step 6 in Algorithm 1).
Exponential moving average (EMA), which is popularly used in adap-
tive gradient methods (e.g., RMSProp (Tieleman & Hinton, 2012),
AdaDelta (Zeiler, 2012), and Adam (Kingma & Ba, 2015)), is used to esti-
mate Eg  p Vg, log?,(B ;0. y, ) dynamically (step 7 in Algorithm 1)
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as

Bk =PBBu1 +(1-Pg €))

where g € (0,1) controls the forgetting rate. After obtaining the task
gradients {g,,k},Tzl, we normalize them to have the same #,-norm, and
compute the aggregated gradient as

T ~
g =« 8k
= X 5

18 lly”

(2

where ¢, is a scaling factor controlling the update magnitude. After nor-
malization, all tasks contribute with comparable magnitudes to the up-
date direction.

The choice of «, is critical in alleviating the task balancing prob-
lem. Intuitively, when some tasks have large gradient norms and oth-
ers have small gradient norms, the first group of tasks has not yet con-
verged while the second group of tasks has almost converged. The cur-
rent model 0, is undesirable and can cause the task balancing problem
as not all tasks have converged. Hence, «, should be large to escape this
undesirable solution. On the other hand, when all task gradient norms
are small, model 6, is close to a stationary solution for all tasks, and
a, should be small so that the solution will no longer change. Thus, we
choose a; = max; . |g ||, i-e., @ is small if and only if all the task
gradient norms are small.

After scaling the losses and gradients, the task-sharing parame-
ter is updated as 6, = 6, — 58, (step 10), where # > 0 is the learn-
ing rate. For the task-specific parameters {‘I’z,k},T:p as the update of
each of them only depends on the corresponding task gradient sep-
arately, their gradients do not suffer from the gradient scaling issue.
Hence, the update for task-specific parameters is simply yr, ;.| = v, —
nVy, 102 €1 (B, 1 0,y ) (steps 11-13).

GradNorm (Chen et al., 2018b) also aims to learn {7, ,T=1 so that
the scaled gradients have similar norms. However, it has two problems.
First, alternating the updates of model parameters and task weights can-
not guarantee all task gradients have the same magnitude in each iter-
ation. Second, as will be seen from Fig. 6 inSection 4.5, the choice of
the update magnitude «;, can significantly affect performance. However,
this is not considered in GradNorm.

4. Experiments

In this section, we empirically evaluate the proposed DB-MTL on a
number of tasks, including scene understanding (Section 4.1), molecular
property prediction (Section 4.2), and image classification (Section 4.3).

4.1. Evaluation on scene understanding

Datasets. Following RLW (Lin et al., 2022), CAGrad (Liu et al., 2021a),
and Nash-MTL (Navon et al., 2022), the following two scene understand-
ing datasets are used: NYUv2 (Silberman et al., 2012), which is an in-
door scene understanding dataset. It has 3 tasks (13-class semantic seg-
mentation, depth estimation, and surface normal prediction) with 795
training and 654 testing images. Cityscapes (Cordts et al., 2016), which
is an urban scene understanding dataset. It has 2 tasks (7-class semantic
segmentation and depth estimation) with 2,975 training and 500 testing
images.

Baselines. The proposed DB-MTL is compared with a number of MTL
baselines, including (i) equal weighting (EW) (Zhang & Yang, 2022);
(ii) GLS (Chennupati et al., 2019), which minimizes the geometric mean

loss T\/HIT:] ¢,(D,; 0,y,); (iii) RLW (Lin et al., 2022), in which the task

weights are sampled from the standard normal distribution; (iv) loss bal-
ancing methods including UW (Kendall et al., 2018), DWA (Liu et al.,
2019a), IMTL-L (Liu et al., 2021b), and IGBv2 (Dai et al., 2023); (v)
gradient balancing methods including MGDA (Sener & Koltun, 2018),
GradNorm (Chen et al., 2018b), PCGrad (Yu et al., 2020), GradDrop
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Performance on NYUv2 with 3 tasks. 1 (}) means the higher (lower) the result, the better the performance. The best
and second best results are marked in bold and underline, respectively .

Segmentation Depth Estimation Surface Normal Prediction At
mloUt PAcct AErr| RErr] Angle Distance Within 7°
Mean| MED| 11.25¢ 22.51 301

STL 53.50 75.39 0.3926 0.1605 21.99 15.16 39.04 65.00 75.16 0.00

EW 53.93 75.53 0.3825 0.1577 23.57 17.01 35.04 60.99 72.05 —1.78,045
GLS 54.59 76.06 0.3785 0.1555 22.71 16.07 36.89 63.11 73.81 +0A30+0 0
RLW 54.04 75.58 0.3827 0.1588 23.07 16.49 36.12 62.08 72.94 =1.1040.49
uw 54.29 75.64 0.3815 0.1583 23.48 16.92 35.26 61.17 72.21 —1.52,439
DWA 54.06 75.64 0.3820 0.1564 23.70 17.11 34.90 60.74 71.81 =1.71,955
IMTL-L 53.89 75.54 0.3834 0.1591 23.54 16.98 35.09 61.06 72.12 —1.92,925
IGBv2 54.61 76.00 0.3817 0.1576 22.68 15.98 37.14 63.25 73.87 +0.05 929
MGDA 53.52 74.76 0.3852 0.1566 22.74 16.00 37.12 63.22 73.84 —0.64.5
GradNorm 5391 75.38 0.3842 0.1571 23.17 16.62 35.80 61.90 72.84 —1.24,05
PCGrad 53.94 75.62 0.3804 0.1578 23.52 16.93 35.19 61.17 72.19 —1.57 044
GradDrop 53.73 75.54 0.3837 0.1580 23.54 16.96 35.17 61.06 72.07 —1.85,030
GradVac 54.21 75.67 0.3859 0.1583 23.58 16.91 35.34 61.15 72.10 =1.75,030
IMTL-G 53.01 75.04 0.3888 0.1603 23.08 16.43 36.24 62.23 73.06 —1.89,054
CAGrad 53.97 75.54 0.3885 0.1588 2247 15.71 37.77 63.82 74.30 —0.27 935
MTAdam 52.67 74.86 0.3873 0.1583 23.26 16.55 36.00 61.92 72.74 =197,
Nash-MTL 53.41 74.95 0.3867 0.1612 2257 15.94 37.30 63.40 74.09 —1.01,9,3
MetaBalance 53.92 75.57 0.3901 0.1594 22.85 16.16 36.72 62.91 73.62 —1.06, 7
MoCo 52.25 74.56 0.3920 0.1622 22.82 16.24 36.58 62.72 73.49 —2.25,951
Aligned-MTL 52.94 75.00 0.3884 0.1570 22.65 16.07 36.88 63.18 73.94 —0.98 56
IMTL 53.63 75.44 0.3868 0.1592 22.58 15.85 37.44 63.52 74.09 —0.57 024
DB-MTL (ours) 53.92 75.60 0.3768 0.1557 21.97 15.37 38.43 64.81 75.24 +1.15, 6

(Chen et al., 2020), GradVac (Wang et al., 2021), IMTL-G (Liu et al.,
2021b), CAGrad (Liu et al., 2021a), MTAdam (Malkiel & Wolf, 2021),
Nash-MTL (Navon et al., 2022), MetaBalance (He et al., 2022), MoCo
(Fernando et al., 2023), and Aligned-MTL (Senushkin et al., 2023); and
(vi) hybrid balancing method IMTL (Liu et al., 2021b). For comparison,
we also include the single-task learning (STL) baseline, which learns each
task separately.

All methods are implemented based on the open-source LibMTL li-
brary (Lin & Zhang, 2023). For all MTL methods, the hard-parameter
sharing (HPS) pattern (Caruana, 1993) is used, which consists of a task-
sharing feature encoder and T task-specific heads. For the proposed DB-
MTL, following MoCo (Fernando et al., 2023), we perform grid search
for g over {0.1,0.5,0.9, ,?015 ]?055 o5} for each dataset, where k is the
number of iterations.

Implementation Details. Following RLW (Lin et al., 2022), we use the
DeepLabV3+ network (Chen et al., 2018a), which contains a ResNet-
50 network with dilated convolutions pre-trained on the ImageNet
dataset (Deng et al., 2009) as the shared encoder and the Atrous
Spatial Pyramid Pooling (Chen et al., 2018a) module as task-specific
head. We train the model for 200 epochs by using the Adam opti-
mizer (Kingma & Ba, 2015) with learning rate 10~* and weight de-
cay 107°. The learning rate is halved to 5x 1073 after 100 epochs. The

HXW §2C R
cross-entropy loss Cyoq = Nxwa Z,, Vit Xeet Ynic108(Fni0)s Ly
Hxw .
loss fdgp,h Nxwa Zn > \d,; —d,;|, and cosine 10sS £, =
H><W ny,ify,
N><H><W I ik = i) are used as the loss functions of

the semantic segmentation, depth estlmatlon, and surface normal pre-
diction tasks, respectively, where N is the batch size, H and W are the
height and width of the image, y, ;. and J,, . are the ground truth label
and predicted probability for pixel i in image » and class ¢, d,,; and dA,,’,-
are the ground truth and predicted depth values for pixel i in image n,
and n,; and i, ; are the ground truth and predicted normal vectors for
pixel i in image n. For NYUv2, the images are resized to 288 x 384, and
the batch size is 8. For Cityscapes, the images are resized to 128 x 256,
and the batch size is 64. Each experiment is repeated three times.

Performance Evaluation. Following DWA (Liu et al., 2019a) and RLW
(Lin et al., 2022), we use (i) the mean intersection over union (mlIoU)
and class-wise pixel accuracy (PAcc) for semantic segmentation; (ii) rel-
ative error (RErr) and absolute error (AErr) for depth estimation; (iii)
mean and median angle errors, and percentage of normals within 7°
(where 7 = 11.25,22.5,30) for surface normal prediction. Following (Lin
et al., 2022; Maninis et al., 2019; Vandenhende et al., 2021), we report
the relative performance improvement of an MTL method A over STL,
averaged over all the metrics above, i.e.,

T
1
A A) = 21 A, (A), ®3)
=
where T is the number of tasks and
A _ pgSTL
A, (A) = 1oo%x—2( 1)”‘MTLM’ ©)

’ll i

where N, is the number of metrics for task 7, M} A is the ith metric value
of method A on task ¢, and s,; is 0 if a larger value indicates better
performance for the ith metric on task ¢, and 1 otherwise.

Performance Results. Table 1 shows the results on NYUv2. As can be
seen, the proposed DB-MTL performs the best in terms of average A,,.
Note that most of the MTL baselines perform better than STL on seman-
tic segmentation and depth estimation, but have a large drop on the
surface normal prediction task, suffering from the task balancing prob-
lem. Only the proposed DB-MTL has comparable performance with STL
on the surface normal prediction task and maintains superiority on the
other tasks. Table 2 shows the results on Cityscapes. As can be seen, DB-
MTL again achieves the best in terms of average A,. Note that all MTL
baselines perform worse than STL in terms of average A, and only the
proposed DB-MTL outperforms STL on all tasks.

4.2. Evaluation on molecular property prediction

Dataset. Following Nash-MTL (Navon et al., 2022), we use the QM9
(Ramakrishnan et al., 2014) dataset, which is for molecular property
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Table 3

Table 2
Performance on Cityscapes with 2 tasks. 1 (|) indicates that the higher (lower) the

result, the better the performance. The best and second best results are highlighted

in bold and underline, respectively.

Segmentation Depth Estimation Apt
mloU? PAcct AErr] RErr|

STL 69.06 91.54 0.01282 43.53 0.00

EW 68.93 91.58 0.01315 45.90 —2.0556
GLS 68.69 91.45 0.01280 44.13 —0.39,; 06
RLW 69.03 91.57 0.01343 44.77 —1.91 45,
uw 69.03 91.61 0.01338 45.89 —2.45 68
DWA 68.97 91.58 0.01350 45.10 =224,
IMTL-L 68.98 91.59 0.01340 45.32 —2.15,48
IGBv2 68.44 91.31 0.01290 45.03 —1.31
MGDA 69.05 91.53 0.01280 44.07 =0.19,439
GradNorm 68.97 91.60 0.01320 44.88 —1.55,7
PCGrad 68.95 91.58 0.01342 45.54 —2.36,,,;
GradDrop 68.85 91.54 0.01354 44.49 =2.02,974
GradVac 68.98 91.58 0.01322 46.43 —2.45 454
IMTL-G 69.04 91.54 0.01280 44.30 —0.46 67
CAGrad 68.95 91.60 0.01281 45.04 —0.87 988
MTAdam 68.43 91.26 0.01340 45.62 —2.74,020
Nash-MTL 68.88 91.52 0.01265 45.92 =111y,
MetaBalance 69.02 91.56 0.01270 4591 —1.18 55
MoCo 69.62 91.76 0.01360 45.50 —2.40,; 59
Aligned-MTL 69.00 91.59 0.01270 44.54 —0.43 .44
IMTL 69.07 91.55 0.01280 44.06 —0.32,49
DB-MTL (ours) 69.17 91.56 0.01280 43.46 +0.20, 4
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Performance (MAE) on QM9 with 11 tasks. 1 () indicates that the higher (lower) the result, the better the performance. The best
and second best results are highlighted in bold and underline, respectively.

M « enomo  €Lumo  (R2?)  ZPVE U U H G Cy A,
STL 0.062 0.192 58.82 51.95 0.529 4.52 63.69  60.83 68.33  60.31 0.069  0.00
EW 0.096 0286  67.46 82.80 4.655 12.4 128.3 128.8 129.2 1256 0116  —1463,,4
GLS 0332 0340 143.1 131.5 1.023 445 53.35 5379 5378 53.34 0.1l —81.16,55
RLW 0.112 0331 74.59 90.48 6.015 15.6 156.0 156.8 157.3 151.6  0.133 —200.9, 54
uw 0336 0382 155.1 144.3 0.965  4.58 61.41 6179 6183 6140  0.116  —92.35,,50
DWA 0.103 0311 71.55 87.21 4.954 13.1 134.9 135.8 136.3 1320 0.121 ~160.9, 147
IMTL-L 0277 0355 150.1 135.2 0946 446 5808 5843 5846 5806  0.110  =77.06,,,
IGBv2 0235 0377 132.3 139.9 2214 590 64.55 65.06 6512 6428  0.121 ~99.86, 104
MGDA 0.181 0.325 118.6 92.45 2411 5.55 103.7 104.2 104.4 1037 0110 —103.0,5¢
GradNorm 0.114 0341 67.17 84.66 7.079 14.6 1732 173.8 174.4 1689  0.147 —227.5, 155
PCGrad 0.104 0293 75.29 88.99 3.695 8.67 115.6 116.0 116.2 1138 0109  —117.8,50;
GradDrop 0.114 0349 7594 94.62 5315 15.8 155.2 156.1 156.6 1519 0136 —1914,96
GradVac 0.100 0299 6894 84.14 4.833 12.5 127.3 127.8 128.1 1247 0117 ~150.7,7.41
IMTL-G 0670 0978 2207 249.7 1948 556 1109 1117 1123 1043 0392 —1250,49
CAGrad 0.107 0296 7543 88.59 2944 612 93.09 9368 9385 9232 0.106  —87.25,5
MTAdam 0.593 1352 2323 419.0 2431 69.7 1060 1067 1070 1007 0.627 —1403 503
Nash-MTL 0.115 0263 8554 86.62 2549 5385 83.49 83.88  84.05 8296  0.097  -73.92,,,
MetaBalance 0090 0277 7050 78.43 4.192 11.2 113.7 114.2 1145 117 0110 —125.1 70
MoCo 0.489 1.096 189.5 2473 34.33 64.5 7546 760.1 761.6 7203 0522 —1314,,
Aligned-MTL 0.123 0295 98.07 94.56 2397 590 86.42 8742  87.19 8675 0.106  —80.58,,5
IMTL 0.138 0344 106.1 102.9 2.595 7.84 102.5 103.0 103.2 1008  0.110  —1043,,,
DB-MTL (ours)  0.112 0264  89.26 86.59 2429 541 6033 6078  60.80 6059  0.098 —58.10

+3.89

prediction with 11 tasks. Each task performs regression on one property.
We use the same split as in Nash-MTL (Navon et al., 2022): 110,000 for
training, 10, 000 for validation, and 10, 000 for testing.

Implementation Details. The experimental setups are the same with
Nash-MTL (Navon et al., 2022). Specifically, a graph neural network
(Gilmer et al., 2017) is used as the shared encoder, and a linear layer
is used as the task-specific head. The targets of each task are normal-
ized to have zero mean and unit standard deviation. The batch size and
training epoch are set to 128 and 300, respectively. The Adam optimizer
(Kingma & Ba, 2015) with the learning rate 0.001 is used for training,

and the ReduceLROnPlateau scheduler (Paszke et al., 2019) is used to
reduce the learning rate once A, on the validation dataset stops improv-
ing. The mean squared error (MSE) ¢,,,, = % Zf,V: (P, — P,,)? is used as
the loss function for each molecular property prediction task, where N
is the batch size, p, and p, are the ground truth and predicted property
values for sample n respectively. Mean absolute error (MAE) is used for
performance evaluation. Each experiment is repeated three times.

Performance Results. Table 3 shows each task’s testing MAE and overall
performance A, (Eq. (3)) on QM9, using the same set of baselines as in
Section 4.1. Note that QM9 is a challenging dataset in MTL and none of
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Classification accuracy (%) on Office-31 and Office-Home. 1 indicates that the higher the result, the better the performance. The best and second
best results are highlighted in bold and underline, respectively. Results of MoCo are from Fernando et al. (2023).

Office-31 Office-Home
Amazon DSLR Webcam Avgt At Artistic Clipart Product Real Avgt At
STL 86.61 95.63 96.85 93.03 0.00 65.59 79.60 90.47 80.00 78.91 0.00
EW 83.53 9727  96.85 9255060 —0.61,0¢6 65.34 78.04 89.80 7950 7817, =092,
GLS 82.84 9562 96.29 9159055  —1.63,06; 64.51 76.85 89.83 7956 77.69,0 —1.58,046
RLW 83.82 9699  96.85 925,080  —0.59,005 64.96 78.19 89.48 80.11 7818,  —0.92,.
uw 83.82 9727  96.67 9258051 —0.56,000 65.97 77.65 89.41 7928 7808,3  —0.98,04
DWA 83.87 9699 9648 924505 —0.70,06 65.27 77.64 89.05 7956 77.88,005  —1.26.04
IMTL-L 84.04 9699  96.48 925052 —0.63,55 65.90 77.28 89.37 7938 77.98,0 —1.10,4,
IGBv2 84.52 98.36  98.05 93.64 . 4056 . 65.59 77.57 89.79 7873 77.92,0, 121,92
MGDA 85.47 9590  97.03 9280014  —0.27,015 64.19 77.60 89.58 79.31 77670000  —1.61,034
GradNorm 83.58 9726 96.85 9256057  —0.59,00s 66.28 77.86 88.66 79.60 781056  —0.90,003
PCGrad 83.59 9699  96.85 92.48,,53 —0.68,057 66.35 77.18 88.95 7950 77.99,010 104,03
GradDrop 84.33 9699  96.30 9254, 059,046 63.57 77.86 89.23 7935 775000  —1.86.0m
GradVac 83.76 9727 96.67 9257075 —0.58,075 65.21 77.43 89.23 7895 7771,  —149,00
IMTL-G 83.41 9672  96.48 9220050  —0.97,005 64.70 77.17 89.61 7945 T798,03  —1.10,04
CAGrad 83.65 9563 96.85 920407  —1.14,0s 64.01 77.50 89.65 7953 773,16  —1.50.02
MTAdam 85.52 95.62  96.29 9248067 —0.60,00; 62.23 77.86 88.73 7794 76.69,06s  —2.9%,0ss
Nash-MTL 85.01 97.54 9741 933205 024505 66.29 78.76 90.04 80.11 7880, =008
MetaBalance 84.21 9590  97.40 92504055  —0.63403 64.01 7750 89.72 7924 716l —1704s
MoCo 84.33 97.54 98.33 93.39 - 63.38 79.41 90.25 78.70 77.93 -
Aligned-MTL 83.36 9645  97.04 928,045 —0.90,04 64.33 76.96 89.87 7993 7177, — —1.50,0
IMTL 83.70 9644  96.29 214,055 —1.02,00 64.07 76.85 89.65 7981 77592  —1.72.045
DB-MTL (ours)  85.12 98.63  98.51 94.09,,,y  +1.05,45 67.42  77.89 90.43 80.07  78.95,;  +0.17,,
Table 5
Effects of each component in DB-MTL on different datasets in terms of A, (Eq. (3.

loss-scale gradient-magnitude =~ NYUv2 Cityscapes Office-31 Office-Home QM9

balancing  balancing

X X 178045 =2.05,956 =0.61.6 =0.92,959 —146.3 75

4 X +0.06,.0.0 —0.38,93 +0.93,0.4 —0.73,005 —74.40,,3,

X v 4076055 +0.12,079 +0.01,939 —0.78,0.49 —65.73,156

v 4 +1.15,,,6  +0.20,,,  +1.05,,  +0.17,,  —58.10,4

the MTL methods performs better than STL, as also observed in previous
works (Gasteiger et al., 2020; Navon et al., 2022). DB-MTL performs the
best among all MTL methods and greatly improves over the second-best
MTL method, Nash-MTL, in terms of average A,,.

4.3. Evaluation on image classification

Datasets. Following RLW (Lin et al., 2022) and MoCo (Fernando et al.,
2023), two image classification datasets are used: Office-31 (Saenko
et al., 2010), which contains 4, 110 images from three domains (tasks):
Amazon, DSLR, and Webcam. Each task has 31 classes. Office-Home
(Venkateswara et al., 2017), which contains 15,500 images from four
domains (tasks): artistic images, clipart, product images, and real-world
images. Each task has 65 object categories collected under office and
home settings. We use the commonly-used data split as in RLW (Lin
et al., 2022): 60 % for training, 20 % for validation, and 20 % for testing.

Implementation Details. Following RLW (Lin et al., 2022), a ResNet-18
(He et al., 2016) pre-trained on the ImageNet dataset (Deng et al., 2009)
is used as a shared encoder, and a linear layer is used as a task-specific
head. We resize the input image to 224 x 224. The batch size and number
of training epochs are set to 64 and 100, respectively. The Adam opti-
mizer (Kingma & Ba, 2015) with learning rate 10~* and weight decay
1073 is used. For each image classification task, the cross-entropy loss
Coy = —# Z,]Ll ZCC=1 Yne l0g(P,,) is used as the loss function, where N
is the batch size, y, . is the ground truth label and y, . is the predicted
probability for sample n and class c. Classification accuracy is used for
evaluation. A, in Eq. (3) is used as the overall performance metrics.
Each experiment is repeated three times.

Performance Results. Table 4 shows the results on Office-31 and Office-
Home, using the same set of baselines as in Section 4.1. On Office-31, DB-
MTL achieves the top testing accuracy on the DSLR and Webcam tasks,
and comparable performance on the Amazon task. On Office-Home, DB-
MTL ranks top two on the Artistic, Product, and Real tasks. On both
datasets, DB-MTL achieves the best average testing accuracy and A,
showing its effectiveness and demonstrating that balancing both loss
scale and gradient magnitude is effective.

4.4. Effectiveness of loss and gradient balancing components

Ablation Study. DB-MTL has two components: loss-scale balancing (i.e.,
logarithm transformation) in Section 3.1 and gradient-magnitude bal-
ancing in Section 3.2. In this experiment, we perform an ablation study
on the effectiveness of each component. We consider the four com-
binations: (i) use neither loss-scale nor gradient-magnitude balancing
(i.e., the EW baseline); (ii) use only loss-scale balancing; (iii) use only
gradient-magnitude balancing; (iv) use both loss-scale and gradient-
magnitude balancing (i.e., the proposed DB-MTL).

Table 5 shows the A ’s of the four combinations on five datasets
(NYUv2, Cityscapes, Office-31, Office-Home, and QM9). As can be seen, on
all datasets, both components are beneficial to DB-MTL and combining
them achieves the best performance.

Effectiveness of Logarithm Transformation. The logarithm transformation
can also be used with other gradient balancing methods. We integrate
it into PCGrad (Yu et al., 2020), GradVac (Wang et al., 2021), IMTL-G
(Liu et al., 2021b), CAGrad (Liu et al., 2021a), Nash-MTL (Navon et al.,
2022), and Aligned-MTL (Senushkin et al., 2023). The experiment is
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PCGrad GradVac

IMTL-G

CAGrad Nash-MTL

Aligned-MTL

Fig. 1. Performance of existing gradient balancing methods with the loss-scale balancing method (i.e., logarithm transformation) on NYUy2. “vanilla” stands for the

original method.

21 IMTL-L
1 I |oss-scale balancing
0.
Q.
< 11 I I
-2 ¢l
—31
-4

NYUv2 Cityscapes Office-31 Office-Home

Fig. 2. Comparison of IMTL-L (Liu et al., 2021b) and the loss-scale balancing
method on four datasets.
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Fig. 3. Comparison of GradNorm (Chen et al., 2018b) and the gradient-
magnitude balancing method on four datasets.
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(b) MTAN.

Fig. 4. Performance on NYUv2 for Cross-stitch (Misra et al., 2016) and MTAN (Liu et al., 2019a) architectures.

performed on NYUv2 using the setup in Section 4.1. Fig. 1 shows the
A, (Eq. (3)). As can be seen, logarithm transformation is consistently
beneficial for these gradient balancing methods, showing the effective-
ness of logarithm transformation. Moreover, DB-MTL still outperforms
these gradient balancing baselines when they are combined with loga-
rithm transformation, demonstrating the effectiveness of the proposed
DB-MTL method.

Further to the discussion in Section 3.1, we compare the loss-scale
balancing method (i.e., using logarithm transformation only) with IMTL-
L (Liu et al., 2021b) on four datasets (NYUv2, Cityscapes, Office-31, and
Office-Home). As can be seen from Fig. 2, the logarithm transformation
consistently outperforms IMTL-L in terms of average A, (Eq. (3)).

Effectiveness of Gradient-Magnitude Balancing. Further to the discussion
in Section 3.2, we conduct a comparison between the proposed gradient-
magnitude balancing method (i.e., DB-MTL without using logarithm
transformation) and GradNorm (Chen et al., 2018b) on four datasets:
NYUv2, Cityscapes, Office-31, and Office-Home. As can be seen from
Fig. 3, the proposed method consistently achieves better performance

than GradNorm in terms of average A, on all datasets, demonstrating
its effectiveness.

4.5. Sensitivity analysis

Effect of MTL Architecture. The proposed DB-MTL is agnostic to the
choice of MTL architectures. In this section, we demonstrate this by
evaluating DB-MTL on NYUv2 using two more MTL architectures: Cross-
stitch (Misra et al., 2016) and MTAN (Liu et al., 2019a). We compare
with GLS (Chennupati et al., 2019) and IGBv2 (Dai et al., 2023), which
perform well in Table 1. The implementation details are the same as in
Section 4.1.

Fig. 4 shows each task’s improvement performance A,. For Cross-
stitch (Fig. 4(a)), DB-MTL performs the best on all tasks. For MTAN
(Fig. 4(b)), all the MTL methods (GLS, IGBv2, and DB-MTL) perform
better than STL on both semantic segmentation and depth estimation,
but only DB-MTL achieves comparable performance as STL on the sur-
face normal prediction task.
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Table 6
Performance on the NYUv2 dataset with SegNet network. 1 (]) indicates that the higher (lower) the result, the better
the performance. The best and second best results are highlighted in bold and underline, respectively. Superscripts
#1, §, &, and * denote the results are from Fernando et al. (2023), Liu et al. (2021a), Navon et al. (2022), Senushkin
et al. (2023), respectively.
Segmentation Depth Estimation Surface Normal Prediction At
mloUt PAcct AErr| RErr) Angle Distance Within 7°
Mean| MED] 11.257 22.57 301
STLS 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15 0.00
EWS 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 +0.88
GLS 39.78 65.63 0.5318 0.2272 26.13 21.08 26.57 52.83 65.78 +5.15
RLW? 37.17 63.77 0.5759 0.2410 28.27 24.18 22.26 47.05 60.62 -2.16
uws 36.87 63.17 0.5446 0.2260 27.04 22.61 23.54 49.05 63.65 +0.91
DWAS 39.11 65.31 0.5510 0.2285 27.61 23.18 24.17 50.18 62.39 +1.93
IMTL-L 39.78 65.27 0.5408 0.2347 26.26 20.99 26.42 53.03 65.94 +4.39
IGBv2 38.03 64.29 0.5489 0.2301 26.94 22.04 24.77 50.91 64.12 +2.11
MGDAS$ 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 —1.66
GradNorm* 20.09 52.06 0.7200 0.2800 24.83 18.86 30.81 57.94 69.73 —-11.7
PCGrad® 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 +1.11
GradDrop® 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 +2.07
GradVac* 37.53 64.35 0.5600 0.2400 27.66 23.38 22.83 48.66 62.21 —0.49
IMTL-G} 39.35 65.60 0.5426 0.2256 26.02 21.19 26.20 53.13 66.24 +4.77
CAGrad* 39.18 64.97 0.5379 0.2229 25.42 20.47 27.37 54.73 67.73 +5.81
MTAdam 39.44 65.73 0.5326 0.2211 27.53 22.70 24.04 49.61 62.69 +3.21
Nash-MTL$ 40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 +7.65
MetaBalance 39.85 65.13 0.5445 0.2261 27.35 22.66 23.70 49.69 63.09 +2.67
MoCo# 40.30 66.07 0.5575 0.2135 26.67 21.83 25.61 51.78 64.85 +4.85
Aligned-MTL* 40.82 66.33 0.5300 0.2200 25.19 19.71 28.88 56.23 68.54 +8.16
IMTL 41.19 66.37 0.5323 0.2237 26.06 20.77 26.76 53.48 66.32 +6.45
DB-MTL (ours) 41.42 66.45 0.5251 0.2160 25.03 19.50 28.72 56.17 68.73 +8.91
2 E
=
= = @ B = = 4
] Pel
Q
$a = = &
21
—3
0 o1 02 03 04 05 06 07 08 09 (1 02 03 04 05 06 07 08 09
kO»S kO»S kO 5 k0.5 k0.5 kU 5 kU 5 kO»S kO»S

Fig. 5. Effect of EMA’s Forgetting Rate f in Eq. (1) on the Office-31 dataset. k denotes the number of iterations.

Effect of Backbone Network. We perform an experiment to evaluate DB-
MTL on NYUv2 with the SegNet network (Badrinarayanan et al., 2017) as
the backbone. The implementation details are the same as in Section 4.1,
except that the batch size is set to 2 and data augmentation is used
(following CAGrad (Liu et al., 2021a)). As can be seen from Table 6,
DB-MTL again achieves the best performance in terms of average A,,.

Effect of EMA’s Forgetting Rate f in Eq. (1). As mentioned in Sec-
tion 4.1, we perform grid search for § over {0.1,0.5,0.9, &%15, l?o—si, 1?0%}’
where k is the number of iterations. In this experiment, we run DB-
MTL on Office-31 with § € {0,0.1,0.2,...,0.9, &%, %%, .., 1% }. The ex-
perimental setup is the same as in Section 4.3. As can be seen from

Fig. 5, the average A, of DB-MTL is insensitive over a large range of

B ({ 1?0—15 I?O—ZS e ,?T.Qs 1), and performs better than DB-MTL without EMA
(p=0).

Effect of a; in Eq. (2). In this experiment, we use different settings
of @, in Eq. (2), namely, (i) constant; (ii) minimum of {||g,,k||2}tT=l ;

(iif) maximum of {||g, cll,}7_; (iv) average of {||g|l,}",; (v) median of

{11& I }IT=1. Fig. 6 compares the results of these different DB-MTL vari-
ants on NYUv2. The experimental setup is the same as in Section 4.1.
As can be seen, the maximum-norm strategy performs much better in
terms of average A, and thus it is used.

4.6. Analysis of training efficiency

Fig. 7 shows the per-epoch running time of different MTL methods on
NYUv2 dataset. All methods are run for 100 epochs on a single NVIDIA
GeForce RTX 3090 GPU and the average running time per epoch is re-
ported. As can be seen, DB-MTL has a similar running time as gradi-
ent balancing methods (i.e., MGDA (Sener & Koltun, 2018), GradNorm
(Chen et al., 2018b), PCGrad (Yu et al., 2020), GradVac (Wang et al.,
2021), IMTL-G (Liu et al., 2021b), CAGrad (Liu et al., 2021a), MTAdam
(Malkiel & Wolf, 2021), MetaBalance (He et al., 2022), MoCo (Fernando
et al., 2023), and Aligned-MTL (Senushkin et al., 2023)) and IMTL (Liu
et al., 2021b), but is larger than the loss balancing methods because
each task’s gradient is computed in every iteration (i.e., step 6 in Algo-
rithm 1). This is a common disadvantage for gradient balancing methods
(Chen et al., 2018b; He et al., 2022; Liu et al., 2021a,b; Malkiel & Wolf,
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Fig. 6. A, of different strategies for a; in Eq. (2) on the NYUv2 dataset. “min”, “max”, “mean”, and “median” denote the minimum, maximum, average, and median
of g ,ll, ¢t =1,...,T), respectively. T is the number of tasks.

Running Time

Fig. 7. The running time per epoch averaged 100 repetitions of different methods on NYUv2 dataset. Cyan, red, yellow, and blue denote loss balancing methods,
gradient balancing methods, hybrid balancing methods, and others, respectively.
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Fig. 8. Gradient norm curves of EW and DB-MTL on the NYUy2 dataset.
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Fig. 9. Training loss curves of EW and DB-MTL on the NYUv2 dataset.
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Fig. 10. Gradient cosine similarity of EW and DB-MTL on the Office-31 dataset.

2021; Navon et al., 2022; Sener & Koltun, 2018; Senushkin et al., 2023;
Wang et al., 2021; Yu et al., 2020). Although DB-MTL is slower than
loss balancing methods, it achieves better performance, as shown in Ta-
bles 1-4, and 6.

4.7. Analysis of training stability

Figs. 8 and 9 compare the gradient norms || Vg, £,(B, x; 0,y ,)ll> and
training losses of EW and DB-MTL on the NYUv2 dataset. As can be seen,
for each task, the training loss of DB-MTL decreases smoothly and finally
converges, and the gradient norm of DB-MTL is much more lower than
EW. This indicates the logarithm transformation and maximum-norm
strategy do not affect training stability.

4.8. Analysis of gradient conflict and task imbalance

Fig. 10 shows the gradient cosine similarity of EW and DB-MTL on
the Office-31 dataset, measuring the gradient conflict and task imbalance
(Yu et al., 2020). As can be seen, comapred to EW, the cosine similarity
of DB-MTL increases faster and then keeps postive during the training
process, indicating that DB-MTL can reduce the gradient conflict and
improve the task balance.

5. Conclusion

In this paper, we alleviate the task-balancing problem in MTL
by presenting Dual-Balancing Multi-Task Learning (DB-MTL), a novel
approach that performs both loss-scale balancing (which makes all
task losses have a similar scale via the logarithm transformation) and
gradient-magnitude balancing (which rescales task gradients to compa-
rable magnitudes using the maximum gradient norm). Extensive exper-
iments on a number of benchmark datasets demonstrate that DB-MTL
outperforms the current state-of-the-art. Moreover, the logarithm trans-
formation can also benefit existing gradient balancing methods. For fu-
ture work, we will extend our approach to incorporate gradient variance
in addition to magnitudes for more refined task weighting, and develop
theoretical analysis to provide convergence guarantees and optimality
conditions for our method.
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