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 a b s t r a c t

Multi-task learning aims to learn multiple related tasks simultaneously and has achieved great success in various 
fields. However, the disparity in loss and gradient scales among tasks often leads to performance compromises, 
and the balancing of tasks remains a significant challenge. In this paper, we propose Dual-Balancing Multi-
Task Learning (DB-MTL) to achieve task balancing from both the loss and gradient perspectives. Specifically, 
DB-MTL achieves loss-scale balancing by performing logarithm transformation on each task loss, and rescales 
gradient magnitudes by normalizing all task gradients to comparable magnitudes using the maximum gradient 
norm. Extensive experiments on a number of benchmark datasets demonstrate that DB-MTL consistently performs 
better than the current state-of-the-art.

1.  Introduction

Multi-task learning (MTL) (Caruana, 1997; Chen et al., 2025; Zhang 
& Yang, 2022) jointly learns multiple related tasks using a single model, 
improving parameter-efficiency and inference speed compared to learn-
ing a separate model for each task. By sharing the model, MTL can ex-
tract common knowledge to improve each task’s performance. It has 
demonstrated its superiority in various fields, such as computer vision 
(Lin et al., 2025, 2024; Luo et al., 2025; Vandenhende et al., 2021; Ye 
& Xu, 2022), natural language processing (Chen et al., 2024; Liu et al., 
2017, 2019b; Sun et al., 2020; Wang et al., 2021), and recommendation 
systems (Hazimeh et al., 2021; Tang et al., 2020; Wang et al., 2023; Yi 
et al., 2025).

To learn multiple tasks simultaneously, equal weighting (EW) (Zhang 
& Yang, 2022) is a straightforward method that minimizes the sum of 
task losses with equal task weights. However, it usually suffers from the 
challenging task balancing problem (Lin et al., 2022; Vandenhende et al., 
2021), in which some tasks perform well while others do not (Stand-
ley et al., 2020). To alleviate this problem, a number of methods have 
been recently proposed by dynamically tuning the task weights. They 
can be categorized as loss balancing (Kendall et al., 2018; Liu et al., 
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2022, 2019a; Ye et al., 2024a, 2021, 2024b) and gradient balancing (Chen 
et al., 2018b, 2020; Fernando et al., 2023; Liu et al., 2021a,b; Navon 
et al., 2022; Sener & Koltun, 2018; Wang et al., 2021; Yu et al., 2020). 
Loss balancing methods balance the tasks based on the learning speed 
(Liu et al., 2019a) or validation performance (Liu et al., 2022; Ye et al., 
2024a, 2021) at the loss level, while gradient balancing methods balance 
the gradients by mitigating gradient conflicts (Yu et al., 2020) or enforc-
ing gradient norms to be close (Chen et al., 2018b) at the gradient level. 
However, recently, multiple extensive empirical studies (Kurin et al., 
2022; Lin et al., 2022; Xin et al., 2022) demonstrate that the perfor-
mance of these existing methods is still unsatisfactory, indicating that 
task balancing is still an open problem.

To mitigate the task balancing problem, in this paper, we consider 
simultaneously balancing both the loss scales (at the loss level) and gra-
dient magnitudes (at the gradient level). Since the loss scales/gradient 
magnitudes among tasks can be different, those with large values can 
dominate the update direction of the model, causing unsatisfactory per-
formance on some other tasks (Liu et al., 2021b; Standley et al., 2020). 
Therefore, we propose a simple yet effective Dual-Balancing Multi-Task 
Learning (DB-MTL) method that consists of both loss-scale and gradient-
magnitude balancing. First, we perform a logarithm transformation on 
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each task loss to make all task losses have a similar scale. This is non-
parametric and can recover the loss transformation in IMTL-L (Liu et al., 
2021b). We find that the logarithm transformation also benefits existing 
gradient balancing methods. Second, we normalize all task gradients to 
the same magnitude as the maximum gradient norm. This is training-
free and guarantees all gradients’ magnitude are the same compared 
with GradNorm (Chen et al., 2018b). Empirically, we find that the mag-
nitude of normalized gradients plays an important role in performance, 
and setting it as the maximum gradient norm among tasks performs the 
best. Extensive experiments are performed on a number of benchmark 
datasets. Results demonstrate that DB-MTL consistently outperforms the 
current state-of-the-art.

Our contributions can be summarized as follows:

1. We propose DB-MTL, a novel dual-balancing approach that simul-
taneously addresses both loss-scale and gradient-magnitude imbal-
ances in multi-task learning through:

• A parameter-free logarithm transformation for loss-scale balanc-
ing that effectively equalizes loss scales across tasks;

• A maximum-norm gradient normalization strategy that rescales 
all task gradients to comparable magnitudes for balanced model 
updates.

2. We conduct extensive experiments across diverse benchmarks 
demonstrating that DB-MTL consistently outperforms state-of-the-art 
MTL methods.

Notations. For clarity, we summarize the key notations used throughout 
this paper. We use 𝑇  to denote the number of tasks, 𝑡 for the training 
dataset of task 𝑡, 𝜽 and {𝝍 𝑡}𝑇𝑡=1 for task-sharing and task-specific param-
eters respectively, 𝛾𝑡 for task weights, and 𝓁𝑡 for the loss function of task 
𝑡. 𝐠𝑡,𝑘 and ̃𝐠𝑘 represent the gradient and aggregated gradient at iteration 
𝑘, with 𝛼𝑘 as the scaling factor.

2.  Related works

In an MTL problem with 𝑇  tasks, we aim to learn a model from 
{𝑡}𝑇𝑡=1, where 𝑡 is the training dataset of task 𝑡. The MTL model pa-
rameters can be divided into two parts: (i) task-sharing parameter 𝜽, 
and (ii) task-specific parameters {𝝍 𝑡}𝑇𝑡=1. For example, in computer vi-
sion tasks, 𝜽 usually represents a feature encoder (e.g., ResNet (He et al., 
2016)) to extract common features among tasks, while 𝝍 𝑡 corresponds 
to the task-specific output module (e.g., a fully-connected layer). For pa-
rameter efficiency, 𝜽 contains most of the MTL model parameters, and 
is crucial to the performance.

Let 𝓁𝑡(𝑡;𝜽,𝝍 𝑡) be the loss on task 𝑡’s data 𝑡 using parameter (𝜽,𝝍 𝑡). 
The training objective of MTL is ∑𝑇

𝑡=1 𝛾𝑡𝓁𝑡(𝑡;𝜽,𝝍 𝑡), where 𝛾𝑡 is the 
weight for task 𝑡. Equal weighting (EW) (Zhang & Yang, 2022) is a simple 
MTL approach that sets 𝛾𝑡 = 1 for all tasks. However, EW usually suffers 
from the task balancing problem in which some tasks have unsatisfac-
tory performance (Standley et al., 2020). To improve its performance, 
many other MTL methods have been proposed to dynamically tune the 
task weights {𝛾𝑡}𝑇𝑖=1 during training. They can be categorized as loss bal-
ancing, gradient balancing, or hybrid balancing.

2.1.  Loss balancing methods

This approach weights the task losses with {𝛾𝑡}𝑇𝑖=1 that are computed 
dynamically. {𝛾𝑡}𝑇𝑖=1 affect the update of both the task-sharing parameter 
𝜽 and task-specific parameter {𝝍 𝑡}𝑇𝑡=1. They can be set based on mea-
sures such as homoscedastic uncertainty (Kendall et al., 2018), learn-
ing speed (Liu et al., 2019a), validation performance (Ye et al., 2024a, 
2021), and improvable gap (Dai et al., 2023). Alternatively, IMTL-L (Liu 
et al., 2021b) encourages the weighted losses {𝛾𝑡𝓁𝑡(𝑡;𝜽,𝝍 𝑡)}𝑇𝑡=1 to have 
similar loss scale across all tasks by transforming each loss 𝓁𝑡(𝑡;𝜽,𝝍 𝑡)
as 𝑒𝑠𝑡𝓁𝑡(𝑡;𝜽,𝝍 𝑡) − 𝑠𝑡, where {𝑠𝑡}𝑇𝑡=1 are learnable parameters and ob-
tained by gradient descent at each iteration.

2.2.  Gradient balancing methods

The update of the task-sharing parameter 𝜽 depends on all task gra-
dients {∇𝜽𝓁𝑡(𝑡;𝜽,𝝍 𝑡)}𝑇𝑡=1. Thus, gradient balancing methods aim to ag-
gregate all task gradients in different manners. For example, MGDA 
(Sener & Koltun, 2018) formulates MTL as a multi-objective optimiza-
tion problem and selects the aggregated gradient with the minimum 
norm (Désidéri, 2012). CAGrad (Liu et al., 2021a) improves MGDA by 
constraining the aggregated gradient to be around the average gradient. 
MoCo (Fernando et al., 2023) mitigates the bias in MGDA by introduc-
ing a momentum-like gradient estimate and a regularization term. Grad-
Norm (Chen et al., 2018b) learns task weights to scale the task gradients 
to similar magnitudes. PCGrad (Yu et al., 2020) projects the gradient of 
one task onto the normal plane of the other if their gradients conflict. 
GradVac (Wang et al., 2021) aligns the gradients regardless of whether 
the gradients conflict or not. GradDrop (Chen et al., 2020) randomly 
masks out gradient values with inconsistent signs. IMTL-G (Liu et al., 
2021b) learns task weights to enforce the aggregated gradient to have 
equal projections on each task gradient. Nash-MTL (Navon et al., 2022) 
formulates gradient aggregation as a Nash bargaining game.

For most gradient balancing methods (such as PCGrad (Yu et al., 
2020), CAGrad (Liu et al., 2021a), MoCo (Fernando et al., 2023), Grad-
Drop (Chen et al., 2020), and IMTL-G (Liu et al., 2021b)), the task 
weight 𝛾𝑡 only affects update of the task-sharing parameter 𝜽, while in 
some other gradient balancing methods (such as MGDA (Sener & Koltun, 
2018), GradNorm (Chen et al., 2018b), and Nash-MTL (Navon et al., 
2022)), the task weight 𝛾𝑡 affects the update of both the task-sharing 
and task-specific parameters.

2.3.  Hybrid balancing methods

As loss balancing and gradient balancing are complementary, these 
two types of methods can be combined to achieve better performance. 
In this approach, the task weight 𝛾𝑡 is obtained as the product of the 
loss and gradient balancing weights. For example, the first hybrid bal-
ancing method IMTL (Liu et al., 2021b) combines IMTL-L with IMTL-G. 
Subsequently, various combinations (Dai et al., 2023; Lin et al., 2022; 
Liu et al., 2022) of loss/gradient balancing methods demonstrate perfor-
mance improvements. In this paper, we propose DB-MTL that combines 
the logarithm transformation (for loss balancing) and the maximum-
norm gradient normalization (for gradient balancing).

3.  Proposed method

In this section, we alleviate the task balancing problem from both 
the loss and gradient perspectives. First, we balance all loss scales by 
performing logarithm transformation on each task’s loss (Section 3.1). 
Next, we achieve gradient-magnitude balancing by normalizing each 
task’s gradient to the same magnitude as the maximum gradient norm
(Section 3.2). The procedure, called DB-MTL (Dual-Balancing Multi-
Task Learning), is shown in Algorithm 1.

3.1.  Scale-balancing loss transformation

Tasks with different types of loss functions usually have different 
scales, leading to the task balancing problem. For example, in the NYUv2
dataset (Silberman et al., 2012), the cross-entropy loss, 𝐿1 loss, and co-
sine loss are used as the loss functions of the semantic segmentation, 
depth estimation, and surface normal prediction tasks, respectively. As 
observed in Navon et al. (2022), Standley et al. (2020), Yu et al. (2020) 
and also in our experimental results in Tables 1 and 6, surface normal 
prediction is affected by the other two tasks (semantic segmentation and 
depth estimation), causing MTL methods like EW to perform unsatisfac-
torily.

When prior knowledge of the loss scales is available, we can choose 
{𝑠⋆𝑡 }

𝑇
𝑡=1 such that {𝑠⋆𝑡 𝓁𝑡(𝑡;𝜽,𝝍 𝑡)}𝑇𝑡=1 have the same scale, and then
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Algorithm 1 Dual-balancing multi-task learning.
Require: numbers of iterations 𝐾, learning rate 𝜂, tasks {𝑡}𝑇𝑡=1, 𝜖 =

10−8, 𝛽;
1: randomly initialize 𝜽0, {𝝍 𝑡,0}𝑇𝑡=1;
2: initialize 𝐠̂𝑡,−1 = 𝟎, for all 𝑡;
3: for 𝑘 = 0,… , 𝐾 − 1 do
4:  for 𝑡 = 1,… , 𝑇  do
5:  sample a mini-batch dataset 𝑡,𝑘 from 𝑡; 
6:  𝐠𝑡,𝑘 = ∇𝜽𝑘 log(𝓁𝑡(𝑡,𝑘;𝜽𝑘,𝝍 𝑡,𝑘) + 𝜖); 
7:  compute 𝐠̂𝑡,𝑘 = 𝛽𝐠̂𝑡,𝑘−1 + (1 − 𝛽)𝐠𝑡,𝑘; 
8:  end for
9:  compute 𝐠̃𝑘 = 𝛼𝑘

∑𝑇
𝑡=1

𝐠̂𝑡,𝑘
‖𝐠̂𝑡,𝑘‖2+𝜖

, where 𝛼𝑘 = max1≤𝑡≤𝑇 ‖𝐠̂𝑡,𝑘‖2; 
10:  update task-sharing parameter by 𝜽𝑘+1 = 𝜽𝑘 − 𝜂𝐠̃𝑘; 
11:  for 𝑡 = 1,… , 𝑇  do 
12:  𝝍 𝑡,𝑘+1 = 𝝍 𝑡,𝑘 − 𝜂∇𝝍 𝑡,𝑘

log(𝓁𝑡(𝑡,𝑘;𝜽𝑘,𝝍 𝑡,𝑘) + 𝜖);
13:  end for
14: end for
15: Return 𝜽𝐾 , {𝝍 𝑡,𝐾}𝑇𝑡=1.

minimize the total loss ∑𝑇
𝑡=1 𝑠

⋆
𝑡 𝓁𝑡(𝑡;𝜽,𝝍 𝑡). Previous methods (Kendall 

et al., 2018; Liu et al., 2021b, 2019a; Ye et al., 2021) implicitly learn 
{𝑠⋆𝑡 }

𝑇
𝑡=1 when learning the task weights {𝛾𝑡}𝑇𝑡=1. However, obviously the 

optimal {𝑠⋆𝑡 }𝑇𝑡=1 cannot be obtained during training.
Without the availability of {𝑠⋆𝑡 }𝑇𝑡=1, the logarithm transformation 

can be used to alleviate the loss scale problem. Specifically, we trans-
form each task’s loss 𝓁𝑡(𝑡;𝜽,𝝍 𝑡) to log𝓁𝑡(𝑡;𝜽,𝝍 𝑡), and then minimize 
∑𝑇

𝑡=1 log𝓁𝑡(𝑡;𝜽,𝝍 𝑡). Since log(⋅) can compress the range of its input, it 
can reduce the loss scale gap between different tasks.

IMTL-L (Liu et al., 2021b) tackles the loss scale issue using a trans-
formed loss 𝑒𝑠𝑡𝓁𝑡(𝑡;𝜽,𝝍 𝑡) − 𝑠𝑡, where 𝑠𝑡 is a learnable parameter for the 
𝑡-th task and approximately solved by one-step gradient descent at every 
iteration. The following Proposition 1 shows that IMTL-L is equivalent 
to the logarithm transformation when 𝑠𝑡 is the exact minimizer in each 
iteration.

Proposition 1.  For 𝑥 > 0, log(𝑥) = min𝑠 𝑒𝑠𝑥 − 𝑠 − 1. 

Proof.  Define an auxiliary function 𝑓 (𝑠) = 𝑒𝑠𝑥 − 𝑠 − 1. It is easy to 
show that d𝑓 (𝑠)d𝑠 = 𝑒𝑠𝑥 − 1 and d2𝑓 (𝑠)d𝑠2 = 𝑒𝑠𝑥 > 0. Thus, 𝑓 (𝑠) is convex. By 
the first-order optimal condition (Boyd & Vandenberghe, 2004), let 
𝑒𝑠⋆𝑥 − 1 = 0, the global minimizer is solved as 𝑠⋆ = − log(𝑥). Therefore, 
𝑓 (𝑠⋆) = 𝑒𝑠⋆𝑥 − 𝑠⋆ − 1 = 𝑒− log(𝑥)𝑥 + log(𝑥) − 1 = log(𝑥), where we finish 
the proof. ∎

Compared to IMTL-L, the logarithm transformation does not require 
additional parameters and computational cost during training. Thus, the 
logarithm transformation is simpler and more effective than IMTL-L.

3.2.  Magnitude-balancing gradient normalization

In addition to the task losses, task gradients also suffer from the scale 
issue. As the update direction of 𝜽 is obtained by uniformly averaging all 
task gradients, it may be dominated by the large task gradients, causing 
sub-optimal performance (Liu et al., 2021a; Yu et al., 2020).

A simple approach is to normalize task gradients to the same 
magnitude. As computing the batch gradient is computationally ex-
pensive, mini-batch stochastic gradient descent is often used in prac-
tice. Specifically, at iteration 𝑘, we sample a mini-batch 𝑡,𝑘 from 
𝑡 for the 𝑡-th task (step 5 in Algorithm 1) and compute the mini-
batch gradient 𝐠𝑡,𝑘 = ∇𝜽𝑘 log𝓁𝑡(𝑡,𝑘;𝜽𝑘,𝝍 𝑡,𝑘) (step 6 in Algorithm 1). 
Exponential moving average (EMA), which is popularly used in adap-
tive gradient methods (e.g., RMSProp (Tieleman & Hinton, 2012), 
AdaDelta (Zeiler, 2012), and Adam (Kingma & Ba, 2015)), is used to esti-
mate 𝔼𝑡,𝑘∼𝑡

∇𝜽𝑘 log𝓁𝑡(𝑡,𝑘;𝜽𝑘,𝝍 𝑡,𝑘) dynamically (step 7 in Algorithm 1) 

as 
𝐠̂𝑡,𝑘 = 𝛽𝐠̂𝑡,𝑘−1 + (1 − 𝛽)𝐠𝑡,𝑘, (1)

where 𝛽 ∈ (0, 1) controls the forgetting rate. After obtaining the task 
gradients {𝐠̂𝑡,𝑘}𝑇𝑡=1, we normalize them to have the same 𝓁2-norm, and 
compute the aggregated gradient as 

𝐠̃𝑘 = 𝛼𝑘
𝑇
∑

𝑡=1

𝐠̂𝑡,𝑘
‖𝐠̂𝑡,𝑘‖2

, (2)

where 𝛼𝑘 is a scaling factor controlling the update magnitude. After nor-
malization, all tasks contribute with comparable magnitudes to the up-
date direction.

The choice of 𝛼𝑘 is critical in alleviating the task balancing prob-
lem. Intuitively, when some tasks have large gradient norms and oth-
ers have small gradient norms, the first group of tasks has not yet con-
verged while the second group of tasks has almost converged. The cur-
rent model 𝜽𝑘 is undesirable and can cause the task balancing problem 
as not all tasks have converged. Hence, 𝛼𝑘 should be large to escape this 
undesirable solution. On the other hand, when all task gradient norms 
are small, model 𝜽𝑘 is close to a stationary solution for all tasks, and 
𝛼𝑘 should be small so that the solution will no longer change. Thus, we 
choose 𝛼𝑘 = max1≤𝑡≤𝑇 ‖𝐠̂𝑡,𝑘‖2, i.e., 𝛼𝑘 is small if and only if all the task 
gradient norms are small.

After scaling the losses and gradients, the task-sharing parame-
ter is updated as 𝜽𝑘+1 = 𝜽𝑘 − 𝜂𝐠̃𝑘 (step 10), where 𝜂 > 0 is the learn-
ing rate. For the task-specific parameters {𝝍 𝑡,𝑘}𝑇𝑡=1, as the update of 
each of them only depends on the corresponding task gradient sep-
arately, their gradients do not suffer from the gradient scaling issue. 
Hence, the update for task-specific parameters is simply 𝝍 𝑡,𝑘+1 = 𝝍 𝑡,𝑘 −
𝜂∇𝝍 𝑡,𝑘

log𝓁𝑡(𝑡,𝑘;𝜽𝑘,𝝍 𝑡,𝑘) (steps 11–13).
GradNorm (Chen et al., 2018b) also aims to learn {𝛾𝑡}𝑇𝑡=1 so that 

the scaled gradients have similar norms. However, it has two problems. 
First, alternating the updates of model parameters and task weights can-
not guarantee all task gradients have the same magnitude in each iter-
ation. Second, as will be seen from Fig. 6 inSection 4.5, the choice of 
the update magnitude 𝛼𝑘 can significantly affect performance. However, 
this is not considered in GradNorm.

4.  Experiments

In this section, we empirically evaluate the proposed DB-MTL on a 
number of tasks, including scene understanding (Section 4.1), molecular 
property prediction (Section 4.2), and image classification (Section 4.3).

4.1.  Evaluation on scene understanding

Datasets. Following RLW (Lin et al., 2022), CAGrad (Liu et al., 2021a), 
and Nash-MTL (Navon et al., 2022), the following two scene understand-
ing datasets are used: NYUv2 (Silberman et al., 2012), which is an in-
door scene understanding dataset. It has 3 tasks (13-class semantic seg-
mentation, depth estimation, and surface normal prediction) with 795
training and 654 testing images. Cityscapes (Cordts et al., 2016), which 
is an urban scene understanding dataset. It has 2 tasks (7-class semantic 
segmentation and depth estimation) with 2, 975 training and 500 testing 
images.

Baselines. The proposed DB-MTL is compared with a number of MTL 
baselines, including (i) equal weighting (EW) (Zhang & Yang, 2022); 
(ii) GLS (Chennupati et al., 2019), which minimizes the geometric mean 
loss 𝑇

√

∏𝑇
𝑡=1 𝓁𝑡(𝑡;𝜽,𝝍 𝑡); (iii) RLW (Lin et al., 2022), in which the task 

weights are sampled from the standard normal distribution; (iv) loss bal-
ancing methods including UW (Kendall et al., 2018), DWA (Liu et al., 
2019a), IMTL-L (Liu et al., 2021b), and IGBv2 (Dai et al., 2023); (v) 
gradient balancing methods including MGDA (Sener & Koltun, 2018), 
GradNorm (Chen et al., 2018b), PCGrad (Yu et al., 2020), GradDrop 

Neural Networks 195 (2026) 108317 

3 



B. Lin et al.

Table 1 
Performance on NYUv2 with 3 tasks. ↑ (↓) means the higher (lower) the result, the better the performance. The best 
and second best results are marked in bold and underline, respectively .

 Segmentation  Depth Estimation  Surface Normal Prediction ∆𝐩↑

 mIoU↑  PAcc↑  AErr↓  RErr↓  Angle Distance  Within 𝑡◦
 Mean↓  MED↓  11.25↑  22.5↑  30↑

 STL 53.50 75.39 0.3926 0.1605 21.99 15.16 39.04 65.00 75.16 0.00

 EW 53.93 75.53 0.3825 0.1577 23.57 17.01 35.04 60.99 72.05 −1.78±0.45
 GLS 54.59 76.06 0.3785 0.1555 22.71 16.07 36.89 63.11 73.81 +0.30±0.30 RLW 54.04 75.58 0.3827 0.1588 23.07 16.49 36.12 62.08 72.94 −1.10±0.40

 UW 54.29 75.64 0.3815 0.1583 23.48 16.92 35.26 61.17 72.21 −1.52±0.39
 DWA 54.06 75.64 0.3820 0.1564 23.70 17.11 34.90 60.74 71.81 −1.71±0.25
 IMTL-L 53.89 75.54 0.3834 0.1591 23.54 16.98 35.09 61.06 72.12 −1.92±0.25
 IGBv2 54.61 76.00 0.3817 0.1576 22.68 15.98 37.14 63.25 73.87 +0.05±0.29

 MGDA 53.52 74.76 0.3852 0.1566 22.74 16.00 37.12 63.22 73.84 −0.64±0.25
 GradNorm 53.91 75.38 0.3842 0.1571 23.17 16.62 35.80 61.90 72.84 −1.24±0.15
 PCGrad 53.94 75.62 0.3804 0.1578 23.52 16.93 35.19 61.17 72.19 −1.57±0.44
 GradDrop 53.73 75.54 0.3837 0.1580 23.54 16.96 35.17 61.06 72.07 −1.85±0.39
 GradVac 54.21 75.67 0.3859 0.1583 23.58 16.91 35.34 61.15 72.10 −1.75±0.39
 IMTL-G 53.01 75.04 0.3888 0.1603 23.08 16.43 36.24 62.23 73.06 −1.89±0.54
 CAGrad 53.97 75.54 0.3885 0.1588 22.47 15.71 37.77 63.82 74.30 −0.27±0.35
 MTAdam 52.67 74.86 0.3873 0.1583 23.26 16.55 36.00 61.92 72.74 −1.97±0.23
 Nash-MTL 53.41 74.95 0.3867 0.1612 22.57 15.94 37.30 63.40 74.09 −1.01±0.13
 MetaBalance 53.92 75.57 0.3901 0.1594 22.85 16.16 36.72 62.91 73.62 −1.06±0.17
 MoCo 52.25 74.56 0.3920 0.1622 22.82 16.24 36.58 62.72 73.49 −2.25±0.51
 Aligned-MTL 52.94 75.00 0.3884 0.1570 22.65 16.07 36.88 63.18 73.94 −0.98±0.56

 IMTL 53.63 75.44 0.3868 0.1592 22.58 15.85 37.44 63.52 74.09 −0.57±0.24
 DB-MTL (ours) 53.92 75.60 0.3768 0.1557 21.97 15.37 38.43 64.81 75.24 +1.15±0.16

(Chen et al., 2020), GradVac (Wang et al., 2021), IMTL-G (Liu et al., 
2021b), CAGrad (Liu et al., 2021a), MTAdam (Malkiel & Wolf, 2021), 
Nash-MTL (Navon et al., 2022), MetaBalance (He et al., 2022), MoCo 
(Fernando et al., 2023), and Aligned-MTL (Senushkin et al., 2023); and 
(vi) hybrid balancing method IMTL (Liu et al., 2021b). For comparison, 
we also include the single-task learning (STL) baseline, which learns each 
task separately.

All methods are implemented based on the open-source LibMTL li-
brary (Lin & Zhang, 2023). For all MTL methods, the hard-parameter 
sharing (HPS) pattern (Caruana, 1993) is used, which consists of a task-
sharing feature encoder and 𝑇  task-specific heads. For the proposed DB-
MTL, following MoCo (Fernando et al., 2023), we perform grid search 
for 𝛽 over {0.1, 0.5, 0.9, 0.1

𝑘0.5
, 0.5
𝑘0.5

, 0.9
𝑘0.5

} for each dataset, where 𝑘 is the 
number of iterations.

Implementation Details. Following RLW (Lin et al., 2022), we use the 
DeepLabV3+ network (Chen et al., 2018a), which contains a ResNet-
50 network with dilated convolutions pre-trained on the ImageNet
dataset (Deng et al., 2009) as the shared encoder and the Atrous 
Spatial Pyramid Pooling (Chen et al., 2018a) module as task-specific 
head. We train the model for 200 epochs by using the Adam opti-
mizer (Kingma & Ba, 2015) with learning rate 10−4 and weight de-
cay 10−5. The learning rate is halved to 5 × 10−5 after 100 epochs. The 
cross-entropy loss 𝓁𝑠𝑒𝑔 = − 1

𝑁×𝐻×𝑊
∑𝑁

𝑛=1
∑𝐻×𝑊

𝑖=1
∑𝐶

𝑐=1 𝑦𝑛,𝑖,𝑐 log(𝑦̂𝑛,𝑖,𝑐 ), 𝐿1

loss 𝓁𝑑𝑒𝑝𝑡ℎ = 1
𝑁×𝐻×𝑊

∑𝑁
𝑛=1

∑𝐻×𝑊
𝑖=1 |𝑑𝑛,𝑖 − 𝑑𝑛,𝑖|, and cosine loss 𝓁𝑛𝑜𝑟𝑚𝑎𝑙 =

1
𝑁×𝐻×𝑊

∑𝑁
𝑛=1

∑𝐻×𝑊
𝑖=1 (1 − 𝐧𝑛,𝑖⋅𝐧̂𝑛,𝑖

||𝐧𝑛,𝑖||⋅||𝐧̂𝑛,𝑖||
) are used as the loss functions of 

the semantic segmentation, depth estimation, and surface normal pre-
diction tasks, respectively, where 𝑁 is the batch size, 𝐻 and 𝑊  are the 
height and width of the image, 𝑦𝑛,𝑖,𝑐 and 𝑦̂𝑛,𝑖,𝑐 are the ground truth label 
and predicted probability for pixel 𝑖 in image 𝑛 and class 𝑐, 𝑑𝑛,𝑖 and 𝑑𝑛,𝑖
are the ground truth and predicted depth values for pixel 𝑖 in image 𝑛, 
and 𝐧𝑛,𝑖 and 𝐧̂𝑛,𝑖 are the ground truth and predicted normal vectors for 
pixel 𝑖 in image 𝑛. For NYUv2, the images are resized to 288 × 384, and 
the batch size is 8. For Cityscapes, the images are resized to 128 × 256, 
and the batch size is 64. Each experiment is repeated three times.

Performance Evaluation. Following DWA (Liu et al., 2019a) and RLW 
(Lin et al., 2022), we use (i) the mean intersection over union (mIoU) 
and class-wise pixel accuracy (PAcc) for semantic segmentation; (ii) rel-
ative error (RErr) and absolute error (AErr) for depth estimation; (iii) 
mean and median angle errors, and percentage of normals within 𝑡◦
(where 𝑡 = 11.25, 22.5, 30) for surface normal prediction. Following (Lin 
et al., 2022; Maninis et al., 2019; Vandenhende et al., 2021), we report 
the relative performance improvement of an MTL method  over STL, 
averaged over all the metrics above, i.e.,

Δp() = 1
𝑇

𝑇
∑

𝑡=1
Δp,𝑡(), (3)

where 𝑇  is the number of tasks and

Δp,𝑡() = 100% × 1
𝑁𝑡

𝑁𝑡
∑

𝑖=1
(−1)𝑠𝑡,𝑖

𝑀
𝑡,𝑖 −𝑀STL

𝑡,𝑖

𝑀STL
𝑡,𝑖

, (4)

where 𝑁𝑡 is the number of metrics for task 𝑡, 𝑀
𝑡,𝑖  is the 𝑖th metric value 

of method  on task 𝑡, and 𝑠𝑡,𝑖 is 0 if a larger value indicates better 
performance for the 𝑖th metric on task 𝑡, and 1 otherwise.

Performance Results. Table 1 shows the results on NYUv2. As can be 
seen, the proposed DB-MTL performs the best in terms of average Δp. 
Note that most of the MTL baselines perform better than STL on seman-
tic segmentation and depth estimation, but have a large drop on the 
surface normal prediction task, suffering from the task balancing prob-
lem. Only the proposed DB-MTL has comparable performance with STL 
on the surface normal prediction task and maintains superiority on the 
other tasks. Table 2 shows the results on Cityscapes. As can be seen, DB-
MTL again achieves the best in terms of average Δp. Note that all MTL 
baselines perform worse than STL in terms of average Δp and only the 
proposed DB-MTL outperforms STL on all tasks.

4.2.  Evaluation on molecular property prediction

Dataset. Following Nash-MTL (Navon et al., 2022), we use the QM9
(Ramakrishnan et al., 2014) dataset, which is for molecular property 
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Table 2 
Performance on Cityscapes with 2 tasks. ↑ (↓) indicates that the higher (lower) the 
result, the better the performance. The best and second best results are highlighted 
in bold and underline, respectively.
    Segmentation  Depth Estimation ∆𝐩↑  
  mIoU↑  PAcc↑  AErr↓  RErr↓
  STL 69.06 91.54 0.01282 43.53 0.00  
  EW 68.93 91.58 0.01315 45.90 −2.05±0.56  
  GLS 68.69 91.45 0.01280 44.13 −0.39±1.06  
  RLW 69.03 91.57 0.01343 44.77 −1.91±0.21  
  UW 69.03 91.61 0.01338 45.89 −2.45±0.68  
  DWA 68.97 91.58 0.01350 45.10 −2.24±0.28  
  IMTL-L 68.98 91.59 0.01340 45.32 −2.15±0.88  
  IGBv2 68.44 91.31 0.01290 45.03 −1.31±0.61  
  MGDA 69.05 91.53 0.01280 44.07 −0.19±0.30  
  GradNorm 68.97 91.60 0.01320 44.88 −1.55±0.70  
  PCGrad 68.95 91.58 0.01342 45.54 −2.36±1.17  
  GradDrop 68.85 91.54 0.01354 44.49 −2.02±0.74  
  GradVac 68.98 91.58 0.01322 46.43 −2.45±0.54  
  IMTL-G 69.04 91.54 0.01280 44.30 −0.46±0.67  
  CAGrad 68.95 91.60 0.01281 45.04 −0.87±0.88  
  MTAdam 68.43 91.26 0.01340 45.62 −2.74±0.20  
  Nash-MTL 68.88 91.52 0.01265 45.92 −1.11±0.21  
  MetaBalance 69.02 91.56 0.01270 45.91 −1.18±0.58  
  MoCo 69.62 91.76 0.01360 45.50 −2.40±1.50  
  Aligned-MTL 69.00 91.59 0.01270 44.54 −0.43±0.44  
  IMTL 69.07 91.55 0.01280 44.06 −0.32±0.10  
  DB-MTL (ours) 69.17 91.56 0.01280 43.46 +0.20±0.40 

Table 3 
Performance (MAE) on QM9 with 11 tasks. ↑ (↓) indicates that the higher (lower) the result, the better the performance. The best 
and second best results are highlighted in bold and underline, respectively.

µ α ϵ𝐇𝐎𝐌𝐎 ϵ𝐋𝐔𝐌𝐎 ⟨R2
⟩  ZPVE U0 U H G cv ∆𝐩↑

 STL 0.062 0.192 58.82 51.95 0.529 4.52 63.69 60.83 68.33 60.31 0.069 0.00

 EW 0.096 0.286 67.46 82.80 4.655 12.4 128.3 128.8 129.2 125.6 0.116 −146.3±7.86
 GLS 0.332 0.340 143.1 131.5 1.023 4.45 53.35 53.79 53.78 53.34 0.111 −81.16±15.5
 RLW 0.112 0.331 74.59 90.48 6.015 15.6 156.0 156.8 157.3 151.6 0.133 −200.9±13.4

 UW 0.336 0.382 155.1 144.3 0.965 4.58 61.41 61.79 61.83 61.40 0.116 −92.35±13.9
 DWA 0.103 0.311 71.55 87.21 4.954 13.1 134.9 135.8 136.3 132.0 0.121 −160.9±16.7
 IMTL-L 0.277 0.355 150.1 135.2 0.946 4.46 58.08 58.43 58.46 58.06 0.110 −77.06±11.1
 IGBv2 0.235 0.377 132.3 139.9 2.214 5.90 64.55 65.06 65.12 64.28 0.121 −99.86±10.4

 MGDA 0.181 0.325 118.6 92.45 2.411 5.55 103.7 104.2 104.4 103.7 0.110 −103.0±8.62
 GradNorm 0.114 0.341 67.17 84.66 7.079 14.6 173.2 173.8 174.4 168.9 0.147 −227.5±1.85
 PCGrad 0.104 0.293 75.29 88.99 3.695 8.67 115.6 116.0 116.2 113.8 0.109 −117.8±3.97
 GradDrop 0.114 0.349 75.94 94.62 5.315 15.8 155.2 156.1 156.6 151.9 0.136 −191.4±9.62
 GradVac 0.100 0.299 68.94 84.14 4.833 12.5 127.3 127.8 128.1 124.7 0.117 −150.7±7.41
 IMTL-G 0.670 0.978 220.7 249.7 19.48 55.6 1109 1117 1123 1043 0.392 −1250±90.9
 CAGrad 0.107 0.296 75.43 88.59 2.944 6.12 93.09 93.68 93.85 92.32 0.106 −87.25±1.51
 MTAdam 0.593 1.352 232.3 419.0 24.31 69.7 1060 1067 1070 1007 0.627 −1403±203
 Nash-MTL 0.115 0.263 85.54 86.62 2.549 5.85 83.49 83.88 84.05 82.96 0.097 −73.92±2.12
 MetaBalance 0.090 0.277 70.50 78.43 4.192 11.2 113.7 114.2 114.5 111.7 0.110 −125.1±7.98
 MoCo 0.489 1.096 189.5 247.3 34.33 64.5 754.6 760.1 761.6 720.3 0.522 −1314±65.2
 Aligned-MTL 0.123 0.295 98.07 94.56 2.397 5.90 86.42 87.42 87.19 86.75 0.106 −80.58±4.18

 IMTL 0.138 0.344 106.1 102.9 2.595 7.84 102.5 103.0 103.2 100.8 0.110 −104.3±11.7
 DB-MTL (ours) 0.112 0.264 89.26 86.59 2.429 5.41 60.33 60.78 60.80 60.59 0.098 −58.10±3.89

prediction with 11 tasks. Each task performs regression on one property. 
We use the same split as in Nash-MTL (Navon et al., 2022): 110, 000 for 
training, 10, 000 for validation, and 10, 000 for testing.

Implementation Details. The experimental setups are the same with 
Nash-MTL (Navon et al., 2022). Specifically, a graph neural network 
(Gilmer et al., 2017) is used as the shared encoder, and a linear layer 
is used as the task-specific head. The targets of each task are normal-
ized to have zero mean and unit standard deviation. The batch size and 
training epoch are set to 128 and 300, respectively. The Adam optimizer 
(Kingma & Ba, 2015) with the learning rate 0.001 is used for training, 

and the ReduceLROnPlateau scheduler (Paszke et al., 2019) is used to 
reduce the learning rate once Δp on the validation dataset stops improv-
ing. The mean squared error (MSE) 𝓁𝑚𝑠𝑒 = 1

𝑁
∑𝑁

𝑛=1(𝑝𝑛 − 𝑝̂𝑛)2 is used as 
the loss function for each molecular property prediction task, where 𝑁
is the batch size, 𝑝𝑛 and 𝑝̂𝑛 are the ground truth and predicted property 
values for sample 𝑛 respectively. Mean absolute error (MAE) is used for 
performance evaluation. Each experiment is repeated three times.

Performance Results. Table 3 shows each task’s testing MAE and overall 
performance Δp (Eq.  (3)) on QM9, using the same set of baselines as in 
Section 4.1. Note that QM9 is a challenging dataset in MTL and none of 
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Table 4 
Classification accuracy (%) on Office-31 and Office-Home. ↑ indicates that the higher the result, the better the performance. The best and second 
best results are highlighted in bold and underline, respectively. Results of MoCo are from Fernando et al. (2023).

 Office-31  Office-Home
 Amazon  DSLR  Webcam  Avg↑ ∆𝐩↑  Artistic  Clipart  Product  Real  Avg↑ ∆𝐩↑

 STL 86.61 95.63 96.85 93.03  0.00 65.59 79.60 90.47 80.00 78.91 0.00

 EW 83.53 97.27 96.85 92.55±0.62 −0.61±0.67 65.34 78.04 89.80 79.50 78.17±0.37 −0.92±0.59
 GLS 82.84 95.62 96.29 91.59±0.58 −1.63±0.61 64.51 76.85 89.83 79.56 77.69±0.27 −1.58±0.46
 RLW 83.82 96.99 96.85 92.55±0.89 −0.59±0.95 64.96 78.19 89.48 80.11 78.18±0.12 −0.92±0.14

 UW 83.82 97.27 96.67 92.58±0.84 −0.56±0.90 65.97 77.65 89.41 79.28 78.08±0.30 −0.98±0.46
 DWA 83.87 96.99 96.48 92.45±0.56 −0.70±0.62 65.27 77.64 89.05 79.56 77.88±0.28 −1.26±0.49
 IMTL-L 84.04 96.99 96.48 92.50±0.52 −0.63±0.58 65.90 77.28 89.37 79.38 77.98±0.38 −1.10±0.61
 IGBv2 84.52 98.36 98.05 93.64±0.26 +0.56±0.25 65.59 77.57 89.79 78.73 77.92±0.21 −1.21±0.22

 MGDA 85.47 95.90 97.03 92.80±0.14 −0.27±0.15 64.19 77.60 89.58 79.31 77.67±0.20 −1.61±0.34
 GradNorm 83.58 97.26 96.85 92.56±0.87 −0.59±0.94 66.28 77.86 88.66 79.60 78.10±0.63 −0.90±0.93
 PCGrad 83.59 96.99 96.85 92.48±0.53 −0.68±0.57 66.35 77.18 88.95 79.50 77.99±0.19 −1.04±0.32
 GradDrop 84.33 96.99 96.30 92.54±0.42 −0.59±0.46 63.57 77.86 89.23 79.35 77.50±0.23 −1.86±0.24
 GradVac 83.76 97.27 96.67 92.57±0.73 −0.58±0.78 65.21 77.43 89.23 78.95 77.71±0.19 −1.49±0.28
 IMTL-G 83.41 96.72 96.48 92.20±0.89 −0.97±0.95 64.70 77.17 89.61 79.45 77.98±0.38 −1.10±0.61
 CAGrad 83.65 95.63 96.85 92.04±0.79 −1.14±0.85 64.01 77.50 89.65 79.53 77.73±0.16 −1.50±0.29
 MTAdam 85.52 95.62 96.29 92.48±0.87 −0.60±0.93 62.23 77.86 88.73 77.94 76.69±0.65 −2.94±0.85
 Nash-MTL 85.01 97.54 97.41 93.32±0.82 +0.24±0.89 66.29 78.76 90.04 80.11 78.80±0.52 −0.08±0.69 MetaBalance 84.21 95.90 97.40 92.50±0.28 −0.63±0.30 64.01 77.50 89.72 79.24 77.61±0.42 −1.70±0.54
 MoCo 84.33 97.54 98.33 93.39 − 63.38 79.41 90.25 78.70 77.93 −
 Aligned-MTL 83.36 96.45 97.04 92.28±0.46 −0.90±0.48 64.33 76.96 89.87 79.93 77.77±0.70 −1.50±0.89

 IMTL 83.70 96.44 96.29 92.14±0.85 −1.02±0.92 64.07 76.85 89.65 79.81 77.59±0.29 −1.72±0.45
 DB-MTL (ours) 85.12 98.63 98.51 94.09±0.19 +1.05±0.20 67.42 77.89 90.43 80.07 78.95±0.35 +0.17±0.44

Table 5 
Effects of each component in DB-MTL on different datasets in terms of Δp (Eq.  (3)).
 loss-scale  gradient-magnitude  NYUv2  Cityscapes  Office-31  Office-Home  QM9
 balancing  balancing
 %  % −1.78±0.45 −2.05±0.56 −0.61±0.67 −0.92±0.59 −146.3±7.86
 !  % +0.06±0.09 −0.38±0.39 +0.93±0.42 −0.73±0.95 −74.40±13.2
 %  ! +0.76±0.25 +0.12±0.70 +0.01±0.39 −0.78±0.49 −65.73±2.86
 !  ! +1.15±0.16 +0.20±0.40 +1.05±0.20 +0.17±0.44 −58.10±3.89

the MTL methods performs better than STL, as also observed in previous 
works (Gasteiger et al., 2020; Navon et al., 2022). DB-MTL performs the 
best among all MTL methods and greatly improves over the second-best 
MTL method, Nash-MTL, in terms of average Δp.

4.3.  Evaluation on image classification

Datasets. Following RLW (Lin et al., 2022) and MoCo (Fernando et al., 
2023), two image classification datasets are used: Office-31 (Saenko 
et al., 2010), which contains 4, 110 images from three domains (tasks): 
Amazon, DSLR, and Webcam. Each task has 31 classes. Office-Home
(Venkateswara et al., 2017), which contains 15, 500 images from four 
domains (tasks): artistic images, clipart, product images, and real-world 
images. Each task has 65 object categories collected under office and 
home settings. We use the commonly-used data split as in RLW (Lin 
et al., 2022): 60% for training, 20% for validation, and 20% for testing.

Implementation Details. Following RLW (Lin et al., 2022), a ResNet-18
(He et al., 2016) pre-trained on the ImageNet dataset (Deng et al., 2009) 
is used as a shared encoder, and a linear layer is used as a task-specific 
head. We resize the input image to 224 × 224. The batch size and number 
of training epochs are set to 64 and 100, respectively. The Adam opti-
mizer (Kingma & Ba, 2015) with learning rate 10−4 and weight decay 
10−5 is used. For each image classification task, the cross-entropy loss 
𝓁𝑐𝑙𝑠 = − 1

𝑁
∑𝑁

𝑛=1
∑𝐶

𝑐=1 𝑦𝑛,𝑐 log(𝑦̂𝑛,𝑐 ) is used as the loss function, where 𝑁
is the batch size, 𝑦𝑛,𝑐 is the ground truth label and 𝑦̂𝑛,𝑐 is the predicted 
probability for sample 𝑛 and class 𝑐. Classification accuracy is used for 
evaluation. Δp in Eq.  (3) is used as the overall performance metrics. 
Each experiment is repeated three times.

Performance Results. Table 4 shows the results on Office-31 and Office-
Home, using the same set of baselines as in Section 4.1. On Office-31, DB-
MTL achieves the top testing accuracy on the DSLR and Webcam tasks, 
and comparable performance on the Amazon task. On Office-Home, DB-
MTL ranks top two on the Artistic, Product, and Real tasks. On both 
datasets, DB-MTL achieves the best average testing accuracy and Δp, 
showing its effectiveness and demonstrating that balancing both loss 
scale and gradient magnitude is effective.

4.4.  Effectiveness of loss and gradient balancing components

Ablation Study. DB-MTL has two components: loss-scale balancing (i.e., 
logarithm transformation) in Section 3.1 and gradient-magnitude bal-
ancing in Section 3.2. In this experiment, we perform an ablation study 
on the effectiveness of each component. We consider the four com-
binations: (i) use neither loss-scale nor gradient-magnitude balancing 
(i.e., the EW baseline); (ii) use only loss-scale balancing; (iii) use only 
gradient-magnitude balancing; (iv) use both loss-scale and gradient-
magnitude balancing (i.e., the proposed DB-MTL).

Table 5 shows the Δp’s of the four combinations on five datasets 
(NYUv2, Cityscapes, Office-31, Office-Home, and QM9). As can be seen, on 
all datasets, both components are beneficial to DB-MTL and combining 
them achieves the best performance.

Effectiveness of Logarithm Transformation. The logarithm transformation 
can also be used with other gradient balancing methods. We integrate 
it into PCGrad (Yu et al., 2020), GradVac (Wang et al., 2021), IMTL-G 
(Liu et al., 2021b), CAGrad (Liu et al., 2021a), Nash-MTL (Navon et al., 
2022), and Aligned-MTL (Senushkin et al., 2023). The experiment is 
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Fig. 1. Performance of existing gradient balancing methods with the loss-scale balancing method (i.e., logarithm transformation) on NYUv2. “vanilla” stands for the 
original method.

Fig. 2. Comparison of IMTL-L (Liu et al., 2021b) and the loss-scale balancing 
method on four datasets.

Fig. 3. Comparison of GradNorm (Chen et al., 2018b) and the gradient-
magnitude balancing method on four datasets.

Fig. 4. Performance on NYUv2 for Cross-stitch (Misra et al., 2016) and MTAN (Liu et al., 2019a) architectures.

performed on NYUv2 using the setup in Section 4.1. Fig. 1 shows the 
Δp (Eq.  (3)). As can be seen, logarithm transformation is consistently 
beneficial for these gradient balancing methods, showing the effective-
ness of logarithm transformation. Moreover, DB-MTL still outperforms 
these gradient balancing baselines when they are combined with loga-
rithm transformation, demonstrating the effectiveness of the proposed 
DB-MTL method.

Further to the discussion in Section 3.1, we compare the loss-scale 
balancing method (i.e., using logarithm transformation only) with IMTL-
L (Liu et al., 2021b) on four datasets (NYUv2, Cityscapes, Office-31, and 
Office-Home). As can be seen from Fig. 2, the logarithm transformation 
consistently outperforms IMTL-L in terms of average Δp (Eq.  (3)).

Effectiveness of Gradient-Magnitude Balancing. Further to the discussion 
in Section 3.2, we conduct a comparison between the proposed gradient-
magnitude balancing method (i.e., DB-MTL without using logarithm 
transformation) and GradNorm (Chen et al., 2018b) on four datasets: 
NYUv2, Cityscapes, Office-31, and Office-Home. As can be seen from 
Fig. 3, the proposed method consistently achieves better performance 

than GradNorm in terms of average Δp on all datasets, demonstrating 
its effectiveness.

4.5.  Sensitivity analysis

Effect of MTL Architecture. The proposed DB-MTL is agnostic to the 
choice of MTL architectures. In this section, we demonstrate this by 
evaluating DB-MTL on NYUv2 using two more MTL architectures: Cross-
stitch (Misra et al., 2016) and MTAN (Liu et al., 2019a). We compare 
with GLS (Chennupati et al., 2019) and IGBv2 (Dai et al., 2023), which 
perform well in Table 1. The implementation details are the same as in 
Section 4.1.

Fig. 4 shows each task’s improvement performance Δp,𝑡. For Cross-
stitch (Fig. 4(a)), DB-MTL performs the best on all tasks. For MTAN
(Fig. 4(b)), all the MTL methods (GLS, IGBv2, and DB-MTL) perform 
better than STL on both semantic segmentation and depth estimation, 
but only DB-MTL achieves comparable performance as STL on the sur-
face normal prediction task.
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Table 6 
Performance on the NYUv2 dataset with SegNet network. ↑ (↓) indicates that the higher (lower) the result, the better 
the performance. The best and second best results are highlighted in bold and underline, respectively. Superscripts 
♯, §, ‡, and ∗ denote the results are from Fernando et al. (2023), Liu et al. (2021a), Navon et al. (2022), Senushkin 
et al. (2023), respectively.

 Segmentation  Depth Estimation  Surface Normal Prediction ∆𝐩↑

 mIoU↑  PAcc↑  AErr↓  RErr↓  Angle Distance  Within 𝑡◦
 Mean↓  MED↓  11.25↑  22.5↑  30↑

 STL§ 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15 0.00

 EW§ 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 +0.88
 GLS 39.78 65.63 0.5318 0.2272 26.13 21.08 26.57 52.83 65.78 +5.15
 RLW§ 37.17 63.77 0.5759 0.2410 28.27 24.18 22.26 47.05 60.62 −2.16

 UW§ 36.87 63.17 0.5446 0.2260 27.04 22.61 23.54 49.05 63.65 +0.91
 DWA§ 39.11 65.31 0.5510 0.2285 27.61 23.18 24.17 50.18 62.39 +1.93
 IMTL-L 39.78 65.27 0.5408 0.2347 26.26 20.99 26.42 53.03 65.94 +4.39
 IGBv2 38.03 64.29 0.5489 0.2301 26.94 22.04 24.77 50.91 64.12 +2.11

 MGDA§ 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 −1.66
 GradNorm∗ 20.09 52.06 0.7200 0.2800 24.83 18.86 30.81 57.94 69.73 −11.7
 PCGrad§ 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 +1.11
 GradDrop§ 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 +2.07
 GradVac∗ 37.53 64.35 0.5600 0.2400 27.66 23.38 22.83 48.66 62.21 −0.49
 IMTL-G§ 39.35 65.60 0.5426 0.2256 26.02 21.19 26.20 53.13 66.24 +4.77
 CAGrad♯ 39.18 64.97 0.5379 0.2229 25.42 20.47 27.37 54.73 67.73 +5.81
 MTAdam 39.44 65.73 0.5326 0.2211 27.53 22.70 24.04 49.61 62.69 +3.21
 Nash-MTL§ 40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 +7.65
 MetaBalance 39.85 65.13 0.5445 0.2261 27.35 22.66 23.70 49.69 63.09 +2.67
 MoCo‡ 40.30 66.07 0.5575 0.2135 26.67 21.83 25.61 51.78 64.85 +4.85
 Aligned-MTL∗ 40.82 66.33 0.5300 0.2200 25.19 19.71 28.88 56.23 68.54 +8.16

 IMTL 41.19 66.37 0.5323 0.2237 26.06 20.77 26.76 53.48 66.32 +6.45
 DB-MTL (ours) 41.42 66.45 0.5251 0.2160 25.03 19.50 28.72 56.17 68.73 +8.91

Fig. 5. Effect of EMA’s Forgetting Rate 𝛽 in Eq.  (1) on the Office-31 dataset. 𝑘 denotes the number of iterations.

Effect of Backbone Network. We perform an experiment to evaluate DB-
MTL on NYUv2 with the SegNet network (Badrinarayanan et al., 2017) as 
the backbone. The implementation details are the same as in Section 4.1, 
except that the batch size is set to 2 and data augmentation is used 
(following CAGrad (Liu et al., 2021a)). As can be seen from Table 6, 
DB-MTL again achieves the best performance in terms of average Δp.

Effect of EMA’s Forgetting Rate 𝛽 in Eq.  (1). As mentioned in Sec-
tion 4.1, we perform grid search for 𝛽 over {0.1, 0.5, 0.9, 0.1

𝑘0.5
, 0.5
𝑘0.5

, 0.9
𝑘0.5

}, 
where 𝑘 is the number of iterations. In this experiment, we run DB-
MTL on Office-31 with 𝛽 ∈ {0, 0.1, 0.2,… , 0.9, 0.1

𝑘0.5
, 0.2
𝑘0.5

,… , 0.9
𝑘0.5

}. The ex-
perimental setup is the same as in Section 4.3. As can be seen from 
Fig. 5, the average Δp of DB-MTL is insensitive over a large range of 
𝛽 ({ 0.1

𝑘0.5
, 0.2
𝑘0.5

,… , 0.9
𝑘0.5

}), and performs better than DB-MTL without EMA 
(𝛽 = 0).

Effect of 𝛼𝑘 in Eq.  (2). In this experiment, we use different settings 
of 𝛼𝑘 in Eq.  (2), namely, (i) constant; (ii) minimum of {‖𝐠̂𝑡,𝑘‖2}𝑇𝑡=1; 
(iii) maximum of {‖𝐠̂𝑡,𝑘‖2}𝑇𝑡=1; (iv) average of {‖𝐠̂𝑡,𝑘‖2}𝑇𝑡=1; (v) median of 

{‖𝐠̂𝑡,𝑘‖2}𝑇𝑡=1. Fig. 6 compares the results of these different DB-MTL vari-
ants on NYUv2. The experimental setup is the same as in Section 4.1. 
As can be seen, the maximum-norm strategy performs much better in 
terms of average Δp, and thus it is used.

4.6.  Analysis of training efficiency

Fig. 7 shows the per-epoch running time of different MTL methods on 
NYUv2 dataset. All methods are run for 100 epochs on a single NVIDIA 
GeForce RTX 3090 GPU and the average running time per epoch is re-
ported. As can be seen, DB-MTL has a similar running time as gradi-
ent balancing methods (i.e., MGDA (Sener & Koltun, 2018), GradNorm 
(Chen et al., 2018b), PCGrad (Yu et al., 2020), GradVac (Wang et al., 
2021), IMTL-G (Liu et al., 2021b), CAGrad (Liu et al., 2021a), MTAdam 
(Malkiel & Wolf, 2021), MetaBalance (He et al., 2022), MoCo (Fernando 
et al., 2023), and Aligned-MTL (Senushkin et al., 2023)) and IMTL (Liu 
et al., 2021b), but is larger than the loss balancing methods because 
each task’s gradient is computed in every iteration (i.e., step 6 in Algo-
rithm 1). This is a common disadvantage for gradient balancing methods
(Chen et al., 2018b; He et al., 2022; Liu et al., 2021a,b; Malkiel & Wolf, 
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Fig. 6. Δp of different strategies for 𝛼𝑘 in Eq.  (2) on the NYUv2 dataset. “min”, “max”, “mean”, and “median” denote the minimum, maximum, average, and median 
of ‖𝐠̂𝑡,𝑘‖2 (𝑡 = 1,… , 𝑇 ), respectively. 𝑇  is the number of tasks.

Fig. 7. The running time per epoch averaged 100 repetitions of different methods on NYUv2 dataset. Cyan, red, yellow, and blue denote loss balancing methods, 
gradient balancing methods, hybrid balancing methods, and others, respectively.

Fig. 8. Gradient norm curves of EW and DB-MTL on the NYUv2 dataset.

Fig. 9. Training loss curves of EW and DB-MTL on the NYUv2 dataset.
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Fig. 10. Gradient cosine similarity of EW and DB-MTL on the Office-31 dataset.

2021; Navon et al., 2022; Sener & Koltun, 2018; Senushkin et al., 2023; 
Wang et al., 2021; Yu et al., 2020). Although DB-MTL is slower than 
loss balancing methods, it achieves better performance, as shown in Ta-
bles 1–4, and 6.

4.7.  Analysis of training stability

Figs. 8 and 9 compare the gradient norms ‖∇𝜽𝑘𝓁𝑡(𝑡,𝑘;𝜽𝑘,𝝍 𝑡,𝑘)‖2 and 
training losses of EW and DB-MTL on the NYUv2 dataset. As can be seen, 
for each task, the training loss of DB-MTL decreases smoothly and finally 
converges, and the gradient norm of DB-MTL is much more lower than 
EW. This indicates the logarithm transformation and maximum-norm 
strategy do not affect training stability.

4.8.  Analysis of gradient conflict and task imbalance

Fig. 10 shows the gradient cosine similarity of EW and DB-MTL on 
the Office-31 dataset, measuring the gradient conflict and task imbalance 
(Yu et al., 2020). As can be seen, comapred to EW, the cosine similarity 
of DB-MTL increases faster and then keeps postive during the training 
process, indicating that DB-MTL can reduce the gradient conflict and 
improve the task balance.

5.  Conclusion

In this paper, we alleviate the task-balancing problem in MTL 
by presenting Dual-Balancing Multi-Task Learning (DB-MTL), a novel 
approach that performs both loss-scale balancing (which makes all 
task losses have a similar scale via the logarithm transformation) and 
gradient-magnitude balancing (which rescales task gradients to compa-
rable magnitudes using the maximum gradient norm). Extensive exper-
iments on a number of benchmark datasets demonstrate that DB-MTL 
outperforms the current state-of-the-art. Moreover, the logarithm trans-
formation can also benefit existing gradient balancing methods. For fu-
ture work, we will extend our approach to incorporate gradient variance 
in addition to magnitudes for more refined task weighting, and develop 
theoretical analysis to provide convergence guarantees and optimality 
conditions for our method.
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