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MTMamba++: Enhancing Multi-Task Dense Scene
Understanding via Mamba-Based Decoders

Baijiong Lin ¥, Weisen Jiang

and Ying-Cong Chen

Abstract—Multi-task dense scene understanding, which trains a
model for multiple dense prediction tasks, has a wide range of appli-
cation scenarios. Capturing long-range dependency and enhancing
cross-task interactions are crucial to multi-task dense prediction.
In this paper, we propose MTMamba++, a novel architecture for
multi-task scene understanding featuring with a Mamba-based
decoder. It contains two types of core blocks: self-task Mamba
(STM) block and cross-task Mamba (CTM) block. STM handles
long-range dependency by leveraging state-space models, while
CTM explicitly models task interactions to facilitate information
exchange across tasks. We design two types of CTM block, namely
F-CTM and S-CTM, to enhance cross-task interaction from fea-
ture and semantic perspectives, respectively. Extensive experiments
on NYUDv2, PASCAL-Context, and Cityscapes datasets demon-
strate the superior performance of MTMamba++ over CNN-based,
Transformer-based, and diffusion-based methods while maintain-
ing high computational efficiency.

Index Terms—Multi-task learning, dense scene understanding,
Mamba.

1. INTRODUCTION

ULTI-TASK dense scene understanding, which trains
M a single model to simultaneously handle multiple pixel-
wise prediction tasks (e.g., semantic segmentation, depth estima-
tion, surface normal estimation, and object boundary detection),
has become increasingly important in many computer vision
applications [1], such as autonomous driving [2], healthcare [3],
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and robotics [4]. The success of multi-task dense prediction
hinges on addressing two fundamental challenges:

1) modeling long-range spatial relationships to capture
global context information, which is essential for pixel-
wise prediction tasks;

2) enhancing cross-task interactions to facilitate knowledge
sharing among different tasks, which is crucial to multi-
task learning.

Existing multi-task dense prediction approaches can be
broadly categorized by their architectural design. CNN-based
methods [5], [6] employ convolutional operations in decoders
for task-specific predictions but primarily capture local features,
struggling with modeling long-range dependencies and global
context understanding [7], [8]. Transformer-based methods [9],
[10], [11], [12], [13], [14] employ attention mechanisms [15]
to better capture global context and demonstrate improved per-
formance. However, they suffer from quadratic computational
complexity with respect to sequence length [16], [17], making
them computationally prohibitive for high-resolution dense pre-
diction tasks.

To address these limitations, we propose MTMamba++, a
novel Mamba-based architecture that achieves effective and
efficient multi-task dense scene understanding. MTMamba-++
introduces two key components based on state space models
(SSMs) [18], [19] in the decoder:

1) The self-task Mamba (STM) block, inspired by [20],
captures global context information for each task by lever-
aging the long-range modeling capabilities of SSMs with
linear computational complexity;

2) The cross-task Mamba (CTM) block enables effective
knowledge exchange across tasks through two variants:
F-CTM for feature-level interaction and S-CTM for
semantic-level interaction. The S-CTM introduces a novel
cross SSM (CSSM) mechanism that models relationships
between task-specific and shared feature sequences, pro-
viding more effective task interaction than simple feature
fusion approaches used in F-CTM.

As the overall framework shown in Fig. 1, MTMamba++
features a three-stage Mamba-based decoder that progressively
refines multi-task predictions. Each stage contains an ECR (ex-
pand, concatenate, and reduce) block that upscales features and
fuses them with encoder features, followed by STM and CTM
blocks for task-specific learning and cross-task interaction. This
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Overview of the general architecture for MTMamba++ and its preliminary version MTMamba [24], presenting with semantic segmentation (abbreviated

as “Semseg”) and depth estimation (abbreviated as “Depth”) tasks. The pretrained encoder (Swin-Large Transformer [25] is used here) is responsible for extracting
multi-scale generic visual representations from the input RGB image. In the decoder, the ECR (expand, concatenate, and reduce) block is designed to upsample the
feature maps and fuse them with high-level features derived from the encoder. Following this, the task-specific representations captured by the self-task Mamba
(STM) blocks are further refined in the cross-task Mamba (CTM) block. This process ensures that each task benefits from the comprehensive feature set provided
by the shared and task-specific components. Each task has its own head to generate the final predictions. We develop two types of CTM blocks and prediction
heads, respectively. MTMamba++ and MTMamba utilize different CTM blocks and prediction heads as their default configurations. The details of each part are

comprehensively introduced in Section III.

design effectively captures long-range dependencies and en-
hances cross-task interaction while maintaining computational
efficiency.

We evaluate MTMamba++ on three standard multi-task
dense prediction benchmark datasets, namely NYUDv2 [21],
PASCAL-Context[22], and Cityscapes [23]. Quantitative results
demonstrate that MTMamba++ significantly surpasses previ-
ous methods, including CNN-based, Transformer-based, and
diffusion-based appoarch. Moreover, comprehensive efficiency
analysis shows that MTMamba++ achieves state-of-the-art per-
formance while maintaining high computational efficiency. No-
tably, our experiments demonstrate that SSM-based architec-
tures are more effective and efficient than attention-based for
multi-task dense prediction tasks. Additionally, qualitative stud-
ies show that MTMamba++ generates superior visual results
with greater accuracy in detail, sharper boundaries, and more
accurate detection in small objects compared to existing ap-
proaches.

In summary, the main contributions of this paper are four-fold:

® We propose MTMamba++, a novel multi-task architecture
based on state space models (SSMs) for multi-task dense
scene understanding. It contains a novel Mamba-based
decoder, effectively modeling long-range spatial relation-
ships and achieving cross-task correlation;

In the decoder, we design two types of cross-task Mamba
(CTM) blocks, namely F-CTM and S-CTM, to enhance
cross-task interaction from feature and semantic perspec-
tives, respectively;

In the S-CTM block, we propose a novel cross SSM
(CSSM) to model the relationship between two sequences
based on the SSM mechanism;

We evaluate MTMamba++ on three benchmark datasets,
including NYUDv2, PASCAL-Context, and Cityscapes.
Quantitative results demonstrate the superiority of MT-
Mamba++ on multi-task dense prediction over previous
methods while maintaining high computational efficiency.

Qualitative evaluations show that MTMamba++ generates
precise predictions.

A preliminary version of this work appeared in a conference
paper [24]. Compared with the previous conference version, we
propose a novel cross SSM (CSSM) mechanism that enables
capturing the relationship between two sequences based on the
SSM mechanism. By leveraging CSSM, we design a novel
cross-task Mamba (CTM) block (i.e., S-CTM) to better achieve
cross-task interaction. We also introduce a more effective and
lightweight prediction head. Based on these innovations, MT-
Mamba++ largely outperforms MTMamba [24]. Moreover, we
extend our experiments to investigate the effectiveness of MT-
Mamba++ on a new multi-task scene understanding benchmark
dataset, i.e., Cityscapes [23]. We also provide more results and
analysis to understand the proposed MTMamba++ model.

The rest of the paper is organized as follows. In Section II,
we review some related works. In Section III, we present a
detailed description of the various modules within our proposed
MTMamba-++ model. In Section IV, we quantitatively and qual-
itatively evaluate the proposed MTMamba++ model on three
benchmark datasets (NYUDv2 [21], PASCAL-Context [22], and
Cityscapes [23]). Finally, we make conclusions in Section V.

II. RELATED WORKS
A. Multi-Task Learning

Multi-task learning (MTL) is a learning paradigm that aims
to jointly learn multiple related tasks using a single model [26],
[27]. Current MTL research mainly focuses on multi-objective
optimization [28], [29], [30], [31], [32], [33] and network ar-
chitecture design [5], [6], [9], [10], [11], [12], [13], [14], [34],
[35]. In multi-task visual scene understanding, most existing
works focus on designing architecture [1], especially developing
specific modules in the decoder to facilitate knowledge exchange
among different tasks. For instance, based on CNN, Xu et al. [5]
introduce PAD-Net, which integrates an effective multi-modal
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distillation module aimed at enhancing information exchange
among various tasks within the decoder. MTI-Net [6] is a com-
plex multi-scale and multi-task CNN architecture that facilitates
information distillation across various feature scales. As the
convolution operation only captures local features [7], recent
approaches [9], [10], [11], [12], [13], [14] develop Transformer-
based decoders to grasp global context by attention mecha-
nism [15]. For example, InvPT [9] is a Transformer-based multi-
task architecture that employs an effective UP-Transformer
block for multi-task feature interaction at different feature scales.
MQTransformer [10] uses a cross-task query attention module in
the decoder to enable effective task association and information
communication.

These works demonstrate the significance of long-range de-
pendency modeling and the enhancement of cross-task correla-
tion for multi-task dense scene understanding. Different from
existing methods, we propose a novel multi-task architecture
derived from the SSM mechanism [36] to capture global infor-
mation better and promote cross-task interaction.

B. State Space Models

State space models (SSMs) are a mathematical framework
for characterizing dynamic systems, capturing the dynamics of
input-output relationships via a hidden state. SSMs have found
broad applications in various fields such as reinforcement learn-
ing [37], computational neuroscience [38], and linear dynamical
systems [39]. Recently, SSMs have emerged as an alternative
mechanism to model long-range dependencies in a manner that
maintains linear complexity with respect to sequence length.
Compared with the convolution operation, which excels at cap-
turing local dependence, SSMs exhibit enhanced capabilities
for modeling long sequences. Moreover, in contrast to attention
mechanism [15], which incurs quadratic computational costs
with respect to sequence length [16], [17], SSMs are more
computation- and memory-efficient.

To improve the expressivity and efficiency of SSMs, many
different structures have been proposed. Gu et al. [19] propose
structured state space models (S4) to enhance computational
efficiency by decomposing the state matrix into low-rank and
normal matrices. Many follow-up works attempt to improve the
effectiveness of S4. For instance, Fu et al. [40] propose a new
SSM layer called H3 to reduce the performance gap between
SSM-based networks and Transformers in language modeling.
Mehta et al. [41] introduce a gated state space layer leveraging
gated units to enhance the models’ expressive capacity.

Recently, Gu and Dao [36] propose a new SSM-based archi-
tecture termed Mamba, which incorporates a new SSM called
S6. This SSM is an input-dependent selection mechanism de-
rived from S4. Mamba has demonstrated superior performance
over Transformers on various benchmarks, such as language
modeling [36], [42], [43], graph reasoning [44], [45], med-
ical image analysis [46], [47], and image classification [20],
[48]. Different from existing research efforts on Mamba, which
mainly focus on single-task settings, in this paper, we consider a
more challenging multi-task setting and propose a novel cross-
task Mamba module to capture inter-task dependence.
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III. METHODOLOGY

In this section, we begin with the foundational knowledge of
state space models (Section III-A) and provide an overview of
the proposed MTMamba++ in Section I1I-B. Next, we delve into
a detailed exploration of each component in the decoder of MT-
Mamba++, including the encoder in Section III-C, three types
of block in the decoder (i.e., the ECR block in Section III-D, the
STM block in Section III-E, and the CTM block in Section III-F),
and the prediction head in Section III-G.

A. Preliminaries

SSMs [18], [19], [36], derived from the linear systems the-
ory [39], map an input sequence z(t) € R to an output sequence
y(t) € R though a hidden state h € R¥ using a linear ordinary
differential equation:

h'(t) = Ah(t) + Bx(t), (1)
y(t) = C'h(t) + Dx(t), )

where A € RV*N is the state transition matrix, B € RY and
C € R¥ are projection matrices, and D € R is the skip connec-
tion. Equation (1) defines the evolution of the hidden state h(t),
while Equation (2) specifies that the output is derived from a
linear transformation of the hidden state h(¢) combined with a
skip connection from the input x(t).

Given that continuous-time systems are not compatible with
digital computers and the discrete nature of real-world data, a
discretization process is essential. This process approximates the
continuous-time system with a discrete-time one. Let A € R be
a discrete-time step size. Equations (1) and (2) are discretized
as

h, = Ah, | + Ba, (3)
yr = C'hy + Day, “4)

where z; = x(At), and

A =exp(AA),
B = (AA) ' (exp(AA) —1)- AB =~ AB,
Cc=cC. 3)

S4 [19] treats A, B, C, and A as trainable parameters and
optimizes them by gradient descent. However, these parameters
do not explicitly depend on the input sequence, which can lead to
suboptimal extraction of contextual information. To address this
limitation, Mamba [36] introduces a new SSM, namely S6. As
illustrated in Fig. 4(a), it incorporates an input-dependent selec-
tion mechanism that enhances the system’s ability to discern and
select relevant information contingent upon the input sequence.
Specifically, B, C, and A are defined as functions of the input
x € RB*L*C Following the computation of these parameters,
A, B, and C are calculated via Equation (5). Subsequently, the
outputsequencey € RE*L*C iscomputed by Equations (3) and
(4), thereby improving the contextual information extraction.
Without specific instructions, in this paper, S6 [36] is used in
the SSM mechanism.
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(a) Ilustration of the ECR (expand, concatenate, and reduce) block. It is responsible for upsampling the task feature and fusing it with the multi-scale feature

from the encoder. More details are provided in Section III-D. (b) Overview of the self-task Mamba (STM) block, which is responsible for learning discriminant
features for each task. Its core module SS2D is derived from [20]. As shown in Fig. 4(b), SS2D extends 1D SSM operation (introduced in Section III-A) to process

2D images. More details about STM are put in Section III-E.

B. Overall Architecture

An overview of MTMamba++ is illustrated in Fig. 1. It
contains three components: an off-the-shelf encoder, a Mamba-
based decoder, and task-specific prediction heads. Specifically,
the encoder is shared across all tasks and plays a pivotal role
in extracting multi-scale generic visual representations from
the input image. The decoder consists of three stages, each
of which progressively expands the spatial dimensions of the
feature maps. This expansion is crucial for dense prediction
tasks, as the resolution of the feature maps directly impacts
the accuracy of the pixel-level predictions [9]. Each decoder
stage is equipped with the ECR block designed to upsample the
feature and integrate it with high-level features derived from the
encoder. Following this, the STM block is employed to capture
the long-range spatial relationship for each task. Additionally,
the CTM block facilitates feature enhancement for each task
by promoting knowledge exchange across different tasks. We
design two types of CTM block, namely F-CTM and S-CTM,
as introduced in Section III-F. In the end, a prediction head is
used to generate the final prediction for each task. We introduce
two types of head, called DenseHead and LiteHead, as described
in Section III-G.

MTMamba++ and our preliminary version MTMamba [24]
have a similar architecture. The default configuration for MT-
Mamba++ utilizes the S-CTM block and LiteHead, while the
default configuration for MTMamba employs the F-CTM block
and DenseHead.

C. Encoder

The encoder in MTMamba++ is shared across different tasks
and is designed to learn generic multi-scale visual features from
the input RGB image. As an example, we consider the Swin
Transformer [25], which segments the input image into non-
overlapping patches. Each patch is treated as a token, and its
feature representation is a concatenation of the raw RGB pixel
values. After patch segmentation, a linear layer is applied to

project the raw token into a C-dimensional feature embedding.
The projected tokens then sequentially pass through four stages
of the encoder. Each stage comprises multiple Swin Transformer
blocks and a patch merging layer. The patch merging layer is
specifically utilized to downsample the spatial dimensions by a
factor of 2x and expand the channel numbers by a factor of 2%,
while the Swin Transformer blocks are dedicated to learning
and refining the feature representations. Finally, for an input
image with dimensions H x W x 3, where H and W denote
the height and width, the encoder generates hierarchical feature

representations at four different scales, i.e., % X % x C, % X
W H W H W
§X20,EXT6X4C,EIH(1§X3*2X80.

D. ECR Block

The ECR (expand, concatenate, and reduce) block is respon-
sible for upsampling the feature and aggregating it with the
encoder’s feature. As illustrated in Fig. 2(a), it contains three
steps. For an input feature, ECR block first 2x upsamples the
feature resolution and 2x reduces the channel number by a
linear layer and the rearrange operation. Then, the feature is
fused with the high-level feature from the encoder through skip
connections. Fusing these features is crucial for compensating
the loss of spatial information that occurs due to downsampling
in the encoder. Finally, a 1 x 1 convolutional layer is used
to reduce the channel number. Consequently, the ECR block
facilitates the efficient recovery of high-resolution details, which
is essential for dense prediction tasks that require precise spatial
information.

E. STM Block

The self-task Mamba (STM) block is responsible for learning
task-specific features. As illustrated in Fig. 2(b), its core mod-
ule is the 2D-selective-scan (SS2D) module, which is derived
from [20]. The SS2D module is designed to address the lim-
itations of applying 1D SSMs (as discussed in Section III-A)
to process 2D image data. As depicted in Fig. 4(b), it unfolds
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h

and T task-specific feature blocks (only one is illustrated) for obtaining each task’s feature z‘. Each task’s output is the aggregation of task-specific feature z*
and global feature z*" weighted by a task-specific gate g*. More details about F-CTM are provided in Section III-F1. (b) Similar to F-CTM, S-CTM generates a
global feature by a fusion block and processes each task’s feature with a task-specific block (only one is illustrated). Differently, S-CTM achieves semantic-aware
cross-task interaction in the cross SS2D (CSS2D) module, which is shown in Fig. 4(d). More details about S-CTM and CSS2D are provided in Section III-F2.

the feature map along four distinct directions, creating four
unique feature sequences, each of which is then processed by an
SSM. The outputs from four SSMs are subsequently added and
reshaped to form a comprehensive 2D feature map.

For an input feature, the STM block operates through several
stages: it first employs a linear layer to expand the channel
number by a controllable expansion factor ar. A convolutional
layer with a SiLU activation function is used to extract local fea-
tures. The SS2D operation models the long-range dependencies
within the feature map. An input-dependent gating mechanism
is integrated to adaptively select the most salient representations
derived from the SS2D process. Finally, another linear layer is
applied to reduce the expanded channel number, yielding the
output feature. Therefore, the STM block effectively captures
both local and global spatial information, which is essential for
the accurate learning of task-specific features in dense scene
understanding tasks.

F. CTM Block

While the STM block excels at learning distinctive repre-
sentations for individual tasks, it fails to establish inter-task
connections, which are essential for enhancing the performance
of MTL. To address this limitation, we propose the novel cross-
task Mamba (CTM) block, depicted in Fig. 3, which facilitates
information exchange across various tasks. We develop two
types of CTM blocks, called F-CTM and S-CTM, from different
perspectives to achieve cross-task interaction.

1) F-CTM: Feature-Level Interaction: AsshowninFig.3(a),
F-CTM comprises a task-shared fusion block and 7" task-specific
feature blocks, where T is the number of tasks. It inputs 7’
features and outputs 7" features. For each task, the input features
have a channel dimension of C.

The task-shared fusion block first concatenates all task fea-
tures, resulting in a concatenated feature with a channel di-
mension of T'C'. This concatenated feature is then fed into a
linear layer to transform the channel dimension from 7'C' to
aC), aligning it with the dimensions of the task-specific features
from the task-specific feature blocks, where « is the expansion
factor introduced in Section III-E. The transformed feature is
subsequently processed through a sequence of operations “Conv
- SiLU - SS2D” to learn a global representation z*", which
contains information from all tasks.

In the task-specific feature block, each task independently
processes its own feature representation z' through its own
sequence of operations “Linear - Conv - SiLU - SS2D”. Then,
we use a task-specific and input-dependent gate gt to aggregate
the task-specific representation z* and the global representation
zMas gl x zt + (1 —g) x z*h.

Hence, F-CTM allows each task to adaptively integrate the
cross-task representation with its own feature, promoting infor-
mation sharing and interaction among tasks. The use of input-
dependent gates ensures that each task can selectively emphasize
either its own feature or the shared global representation based
on the input data, thereby enhancing the model’s ability to learn
discriminative features in a multi-task learning context.

2) S§-CTM: Semantic-Aware Interaction: While feature fu-
sion in F-CTM is an effective way to interact with information,
it may not be sufficient to capture all the complex relationships
across different tasks, especially in multi-task scene understand-
ing where the interactions between multiple pixel-level dense
prediction tasks are highly dynamic and context-dependent.
Thus, we propose S-CTM to achieve semantic-aware interaction.

As shown in Fig. 3(b), S-CTM contains a task-shared fusion
block and T task-specific feature blocks. The fusion block first
concatenates all task features and then passes the concatenated
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(a) Illustration of SSM. Given an input sequence, SSM first computes the input-dependent parameters (i.e., B, C, and A) and then calculates the output

by querying the input through Equations (3) and (4). More details about SSM are provided in Section III-A. (b) Overview of SS2D from [20], which extends 1D
SSMs to process 2D images. It unfolds the 2D feature map along four directions, generating four different feature sequences, each of which is then fed into an
SSM. The four outputs are aggregated and folded to the 2D feature. (c) Illustration of the proposed cross SSM (CSSM), which enables modeling the relationships
between two input sequences based on the SSM mechanism. In CSSM, one input sequence is used to compute (i.e., B, C, and A) and the other input is considered
as the query. The output of CSSM is computed via Equations (3) and (4). More details about CSSM are provided in Section III-F. (d) Overview of the proposed
cross SS2D (CSS2D). It inputs two 2D feature maps, scans them along four directions to generate four pairs of feature sequences, and then passes each pair through
a CSSM. The outputs of CSSMs are subsequently added and reshaped to form a final 2D output feature. The details of CSS2D are put in Section III-F2.

feature through two convolution layers to generate the global
representation, which contains knowledge across all tasks. The
task-specific feature block in S-CTM is adapted from the STM
block by replacing the SS2D with a novel cross SS2D (CSS2D).
The additional input of CSS2D is from the task-shared fusion
block.

As discussed in Section III-A, SSM only models the internal
relationship within a single input sequence, but it does not cap-
ture the interactions between two different sequences. To address
this limitation, we propose the cross SSM (CSSM) to model the
relationship between the task-specific feature sequence (blue)
and the task-shared feature sequence (red), as illustrated in
Fig. 4(c). CSSM receives two sequences as input and outputs one
sequence. The task-shared feature sequence is used to generate
the SSMs parameters (i.e., B, C, and A), and the task-specific
feature sequence is considered as the query input x. The output
is computed via Equations (3) and (4). Consequently, by lever-
aging the SSM mechanism, CSSM can capture the interactions
between two input sequences at the semantic level. Furthermore,
we extend SS2D as CSS2D, as shown in Fig. 4(d). This module
takes two 2D input features, expands them along four directions
to generate four pairs of feature sequences, and feeds each pair
into a CSSM. The outputs from these sequences are subsequently
aggregated and reshaped to form a 2D output feature.

Therefore, compared with F-CTM, S-CTM can better learn
context-aware relationships because of the CSSM mechanism.
CSSM can explicitly and effectively model long-range spatial
relationships within two sequences, allowing S-CTM to under-
stand the interactions between task-specific features and the

global representation, which is critical for multi-task learning
scenarios. In contrast, the feature fusion in F-CTM makes it
difficult to capture the complex dependencies inherent across
tasks.

G. Prediction Head

As shown in Fig. 1, after the decoder, the size of task-specific
feature is % X % x C. Each task has its own prediction head
to generate its final prediction. We introduce two types of pre-
diction heads as follows.

1) Densehead: DenseHead is inspired by [49] and is used in
our preliminary version MTMamba [24]. Specifically, each head
contains a patch expand operation and a final linear layer. The
patch expanding operation, similar to the one in the ECR block
(as shown in Fig. 2(a)), performs 4 x upsampling to restore the
resolution of the feature maps to the original input resolution
H x W. The final linear layer is used to project the feature
channels to the task’s output dimensions and output the final
pixel-wise prediction.

2) Litehead: In DenseHead, upsampling is performed first,
which can lead to a significant computational cost. Hence,
we introduce a more simple, lightweight, and effective head
architecture, called LiteHead. Specifically, it consists of a 3 x 3
convolutional layer, followed by a batch normalization layer, a
ReLU activation function, and a final linear layer that projects
the feature channels onto the task’s output dimensions. Sub-
sequently, the feature is simply interpolated to align with the
input resolution and then used as the output. Thus, LiteHead
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is much more computationally efficient than DenseHead. Note
that since each task has its own head, the overall computational
cost reduction is linearly related to the number of tasks.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the proposed MTMamba++ in multi-task dense scene under-
standing.

A. Experimental Setups

1) Datasets: Following [9], [11], [12], we conduct experi-
ments on three multi-task dense prediction benchmark datasets:
1) NYUDv2 [21] contains a number of indoor scenes, in-
cluding 795 training images and 654 testing images. It
consists of four tasks: 40-class semantic segmentation
(Semseg), monocular depth estimation (Depth), surface
normal estimation (Normal), and object boundary detec-

tion (Boundary).

2) PASCAL-Context [22], originated from the PASCAL
dataset [50], includes both indoor and outdoor scenes
and provides pixel-wise labels for tasks like semantic
segmentation, human parsing (Parsing), and object bound-
ary detection, with additional labels for surface normal
estimation and saliency detection tasks generated by [51].
It contains 4,998 training images and 5,105 testing images.

3) Cityscapes [23] is an urban scene understanding dataset.
It has two tasks (19-class semantic segmentation and
disparity estimation) with 2,975 training and 500 testing
images.

2) Implementation Details: We use the Swin-Large Trans-
former [25] pretrained on the ImageNet-22K dataset [52] as
the encoder. The expansion factor « is set to 2 in both STM
and CTM blocks. Following [9], [11], [12], we resize the input
images of NYUDv2, PASCAL-Context, and Cityscapes datasets
as 448 x 576,512 x 512,and 512 x 1024, respectively, and use
the same data augmentations including random color jittering,
random cropping, random scaling, and random horizontal flip-
ping. The ¢; loss is used for depth estimation and surface normal
estimation tasks, while the cross-entropy loss is for other tasks.
The proposed model is trained with a batch size of 4 for 40,000
iterations. The AdamW optimizer [53] with a weight decay of
1 x 109 and the polynomial learning rate scheduler are used for
all three datasets. The learning rate is set to 2 x 107°,8 x 1072,
and 1 x 10~ for NYUDv2, PASCAL-Context, and Cityscapes
datasets, respectively.

3) Evaluation Metrics: Following [9], [11], [12], we adopt
mean intersection over union (mloU) as the evaluation met-
ric for semantic segmentation and human parsing tasks, root
mean square error (RMSE) for monocular depth estimation
and disparity estimation tasks, mean error (mErr) for surface
normal estimation task, maximal F-measure (maxF) for saliency
detection task, and optimal-dataset-scale F-measure (odsF) for
object boundary detection task. Moreover, we report the average
relative performance improvement of an MTL model A over
single-task (STL) models as the overall metric, which is defined
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as follows,

T

1 o M7 — M
Ay (A) = 100% x = ;(—1) —apT (6)

where 71" is the number of tasks, MtA is the metric value of
method A on task ¢, and s, is 0 if a larger value indicates better
performance for task ¢, and 1 otherwise.

B. Comparison With State-of-The-Art Methods

We compare the proposed MTMamba++ method with three
types of MTL methods:

1) CNN-based methods, including Cross-Stitch [54],
PAP [55], PSD [56], PAD-Net [5], MTI-Net [6],
ATRC [57], and ASTMT [51];

2) Transformer-based methods, including InvPT [9],
TaskPrompter [12], InvPT++ [11], MQTransformer [10],
TSP-Transformer [13], and MLoRE [14]; and

3) Diffusion-based method TaskDiffusion [34].

Table I provides the results on NYUDv2 and PASCAL-
Context datasets. As can be seen, MTMamba++ largely out-
performs CNN-based, Transformer-based, and Diffusion-based
methods, especially achieving the best performance in all four
tasks of NYUDv2. Notably, MTMamba++ shows significant
improvements over MLoRE [14] by +1.05 (mloU) and +0.97
(odsF) in semantic segmentation and object boundary detection
tasks, which demonstrates the superiority of MTMamba++.
Moreover, MTMamba++ performs better than MTMamba,
showing the effectiveness of S-CTM and LiteHead.

On the PASCAL-Context dataset, MTMamba++ continues to
demonstrate superior performance on all tasks except the nor-
mal prediction task, which is also comparable. Compared with
MLoRE [14], MTMamba++ achieves notable improvements of
+0.53 (mloU), +2.35 (mloU), +0.66 (maxF), and +3.18 (odsF)
in semantic segmentation, human parsing, saliency detection,
and object boundary detection tasks, respectively. When com-
pared to the diffusion-based method TaskDiffusion [34], MT-
Mamba++ shows advantages of +0.73 (mloU), +3.25 (mloU),
+0.62 (maxF), and +3.71 (odsF) in four tasks. These results
clearly demonstrate the effectiveness of MTMamba++ for multi-
task dense prediction. Furthermore, MTMamba++ outperforms
our preliminary work MTMamba on three of five tasks while
maintaining comparable performance on the remaining two,
further validating the effectiveness of our proposed components.

Table II shows the results on the Cityscapes dataset. We
can see that Mamba-based methods perform largely better than
the previous CNN-based and Transformer-based approaches
on both two tasks. Moreover, MTMamba++ archives the
best performance. Notably, MTMamba++ outperforms Tak-
sPrompter [12] by +6.72 (mloU) in the semantic segmentation
task, demonstrating that MTMamba++ is more effective. Be-
sides, MTMamba++ performs better than MTMamba, which
shows the effectiveness of S-CTM and LiteHead.

The qualitative comparisons with baselines (i.e., InvPT [9],
TaskPrompter [12], and MTMamba [24]) on NYUDv2,
PASCAL-Context, and Cityscapes datasets are shown in
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS ON NYUDV2 (LEFT) AND PASCAL-CONTEXT (RIGHT) DATASETS
Semseg  Depth  Normal Boundary Semseg Parsing Saliency Normal Boundary
Method mloUT  RMSE, mErr]  odsFt Method mloUT  mloUt  maxFf  mErr)  odsFt
CNN-based decoder CNN-based decoder
Cross-Stitch [54] 36.34 0.6290 20.88 76.38 ASTMT [51] 68.00 61.10 65.70 14.70 72.40
PAP [55] 36.72 0.6178 20.82 76.42 PAD-Net [5] 53.60 59.60 65.80 15.30 72.50
PSD [56] 36.69 0.6246 20.87 76.42 MTI-Net [6] 61.70 60.18 84.78 14.23 70.80
PAD-Net [5] 36.61 0.6270 20.85 76.38 ATRC [57] 62.69 59.42 84.70 14.20 70.96
MTI-Net [6] 4597 0.5365 20.27 77.86 ATRC-ASPP [57] 63.60 60.23 83.91 14.30 70.86
ATRC [57] 46.33 0.5363 20.18 77.94 ATRC-BMTAS [57] 67.67 62.93 82.29 14.24 72.42
Transformer-based decoder Transformer-based decoder
InvPT [9] 53.56 0.5183 19.04 78.10 InvPT [9] 79.03 67.61 84.81 14.15 73.00
InvPT++ [11] 53.85 0.5096 18.67 78.10 InvPT++ [11] 80.22 69.12 84.74 13.73 74.20
TaskPrompter [12] 55.30 0.5152 18.47 78.20 TaskPrompter [12] 80.89 68.89 84.83 13.72 73.50
MQTransformer [10] 54.84 0.5325 19.67 78.20 MQTransformer [10] 78.93 67.41 83.58 14.21 73.90
TSP-Transformer [13] 55.39 0.4961 18.44 77.50 TSP-Transformer [13] 81.48 70.64 84.86 13.69 74.80
MLORE [14] 55.96 0.5076 18.33 78.43 MLORE [14] 81.41 70.52 84.90 13.51 75.42
Diffusion-based decoder Diffusion-based decoder
TaskDiffusion [34] 55.65 0.5020 18.43 78.64 TaskDiffusion [34] 81.21 69.62 84.94 13.55 74.89
Mamba-based decoder Mamba-based decoder
MTMambea [24] 55.82 0.5066 18.63 78.70 MTMamba [24] 81.11 72.62 84.14 14.14 78.80
MTMamba++ 57.01 0.4818 18.27 79.40 MTMamba++ 81.94 72.87 85.56 14.29 78.60

1 (]) indicates that a higher (lower) result corresponds to better performance. The best and second best results are highlighted in bold and underline, respectively.

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE
CITYSCAPES DATASET

Semseg  Disparity

Method mloUf  RMSE|
CNN-based decoder
PAD-Net [5] 53.19 5.05
MTI-Net [6] 59.85 5.06
Transformer-based decoder
InvPT [9] 71.78 4.67
TaskPrompter [12] 7241 5.49
Mamba-based decoder
MTMamba [24] 78.00 4.66
MTMamba++ 79.13 4.63

1 () indicates that a higher (lower) result corresponds to better
performance. The best and second best results are highlighted in
bold and underline, respectively.

Figs. 6, 7, and 8, demonstrating that MTMmaba++ provides
more precise predictions and details.

C. Model Analysis

In this section, we provide a comprehensive analysis of the
proposed MTMamba++. Without specific instructions, the en-
coder in this section is the Swin-Large Transformer.

1) Effectiveness of Each Component: The decoders of MT-
Mamba++ contain two types of core blocks: STM and CTM
blocks. Compared to the preliminary version MTMamba [24],
MTMamba++ replaces the F-CTM block and DenseHead of
MTMamba with the S-CTM block and LiteHead, respectively.

In this experiment, we study the effectiveness of each com-
ponent on the NYUDv2 dataset. We first introduce two groups
of baselines:

1) “Multi-task” represents an MTL model using only stan-

dard Swin Transformer blocks [25] after the ECR block
in each decoder stage for each task; and
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Fig. 5. A qualitative comparison of each decoder stage in MTMamba++ on
NYUDV2. Zoom in for more details.

2) “Single-task” means that each task has a task-specific

encoder-decoder.

The results are shown in Table III, where #9 and #11 are
the default configurations of MTMamba and MTMamba++,
respectively.

Firstly, the STM block outperforms the Swin Transformer
block [25] in terms of efficiency and effectiveness for multi-task
dense prediction, as indicated by the superior results in Table III
(#3 vs. #7 and #5 vs. #8). Secondly, merely increasing the
number of STM blocks from two to three does not enhance
performance significantly. When the F-CTM block is incorpo-
rated, the performance largely improves in terms of A,, (#9
vs. #7/#8), demonstrating the effectiveness of F-CTM. Thirdly,
comparisons between #3 and #4, #5 and #6, as well as #9
and #10 show that LiteHead is more effective and efficient
than DenseHead. Fourthly, compared #10 with #11, we can
find that replacing F-CTM with S-CTM leads to a significant
performance improvement in all tasks with a tiny additional cost,
demonstrating that the semantic-aware interaction in S-CTM is
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TABLE III
EFFECTIVENESS OF EACH CORE COMPONENT ON NYUDV2

Semseg  Depth  Normal Boundary A;,[%] | #Param FLOPs
#  Method Each Decoder Stage Head mloUT RMSE,  mErr| odsF} Y MB,, GB|
1 Single-task 2*Swin DenseHead 54.32 0.5166 19.21 77.30 0.00 889 1075
2 & 2*STM DenseHead 54.94 0.5100 18.85 78.00 +1.29 864 1040
3 2*Swin DenseHead 53.72 0.5239 19.97 76.50 -1.87 303 466
4 Multi-task 2*Swin LiteHead 53.37 0.5201 19.62 78.40 -0.78 302 436
5 3*Swin DenseHead 54.22 0.5225 19.84 77.40 -1.11 341 563
6 3*Swin LiteHead 54.44 0.5117 19.65 78.60 +0.14 339 533
7 2*STM DenseHead 54.66 0.4984 18.81 78.20 +1.84 276 435
8 3*STM DenseHead 54.75 0.5054 18.81 78.20 +1.55 300 517
9  MTMamba++ 2*STM+1*F-CTM DenseHead 55.82 0.5066 18.63 78.70 +2.38 308 541
10 2*STM+1*F-CTM LiteHead 56.53 0.5054 18.71 79.20 +2.82 306 510
11 2*STM+1*S-CTM LiteHead 57.01 0.4818 18.27 79.40 +4.82 315 524

“Multi-task™ denotes an MTL model where each task uses standard Swin Transformer blocks [25] after the ECR block in each decoder stage. “Single-task™ is the single-task counterpart of

“Multi-task”. #11 is the default configuration of MTMamba++.

TABLE IV
COMPARISON BETWEEN SSM AND ATTENTION ON NYUDvV2

TABLE V
EFFECTIVENESS OF EACH DECODER STAGE IN MTMAMBA++ ON NYUDV2

Semseg Depth Normal Boundary A,,[%]|#Param FLOPs

mloUt RMSE| mErr| odsFt 1T MB| GBJl
attention-based | 55.15  0.4945 18.72 79.00 +2.63 448 796
SSM-based 57.01 0.4818 18.27 79.40 +4.82 315 524

‘We replace the SSM-related modules in MTMamba++ (i.e., the SS2D and CSS2D modules) with attention-based
hanisms (i.c., self-attention and cross-attenti hanisms).

more effective than F-CTM. Finally, the default configuration
of MTMamba-++ significantly surpasses the “Single-task™ base-
lines across all tasks (#11 vs. #1/#2), thereby demonstrating the
effectiveness of MTMamba++.

2) Comparison Between SSM and Attention: To demonstrate
the superiority of the SSM-based architecture in multi-task
dense prediction, we conduct an experiment on NYUDv2 by
replacing the SSM-related components in MTMamba++ with
attention-based counterparts. Specifically, we substitute the
SS2D module in the STM block with window-based multi-
head self-attention [25] and replace the CSS2D module in the
S-CTM block with window-based multi-head cross-attention.
The comparative results in Table IV show that MTMamba++
significantly outperforms the attention-based variant across all
tasks while requiring approximately 29.7% fewer parameters
and 34.2% lower FLOPs. This efficiency advantage is primarily
from SSM’s linear computational complexity with respect to
sequence length, in contrast to the quadratic complexity of at-
tention mechanisms. These results demonstrate that SSM-based
architectures are more effective and efficient for multi-task
dense prediction tasks, where we need to process high-resolution
feature maps in pixel-level prediction.

3) Effectiveness of Each Decoder Stage: As shown in Fig. 1,
the decoder of MTMamba-++ consists of three stages. In this ex-
periment, we study the effectiveness of these three stages on the
NYUDv2 dataset. Table V presents the ablation results, clearly
demonstrating that each decoder stage contributes positively to
the performance of MTMamba++. The progressive performance
gains achieved by successively incorporating each stage validate
the effectiveness of our multi-stage decoder design in capturing
and integrating multi-scale contextual features. As visualized

Semseg Depth Normal Boundary A,,[%]|#Param FLOPs

Stagel Stage2 Stage3 |’ |,y RMSE, mErr, odsFl | MBL  GBL
v X X | 5550 04960 1898 67.90 -1.20 287 291
4 4 X | 5554 04872 1846 77.70 +3.08 | 309 393
4 4 4 57.01 0.4818 18.27 79.40 +4.82 | 315 524

TABLE VI
EFFECT OF EACH SCAN IN CSS2D MODULE ON NYUDvV2

Semseg  Depth Normal Boundary A,,[%]
mloUt  RMSE| mErr| odsF1 N
MTMamba++ 57.01 0.4818 18.27 79.40 +4.82
w/0 scanl 56.02 0.4962 18.30 79.30 +3.60
w/0 scan2 56.50 0.4967 18.22 79.30 +3.90
w/o0 scan3 56.09 0.4874 18.41 79.30 +3.91
w/o0 scan4 56.27 0.4942 18.36 79.30 +3.73

in Fig. 5, this hierarchical feature aggregation enables progres-
sively refined predictions with sharper boundaries, particularly
benefiting the boundary detection task.

4) Effect of Each Scan in CSS2D Module: As mentioned in
Section III-F2, the CSS2D module scans the 2D feature map
from four different directions. We conduct an experiment on
NYUDV2 to study the effect of each scan. The results are pre-
sented in Table VI. As can be seen, dropping any direction leads
to a performance drop compared with the default configuration
that uses all directions, showing that all directions are beneficial
to MTMamba++.

5) Analysis of a: As mentioned in Sections III-E and ITI-F2,
in MTMamba++, both STM and S-CTM blocks expand the
feature channel to improve the model capacity by a hyperpa-
rameter o. We conduct an experiment on NYUDV2 to explore
the relationship between « and task conflicts. Increasing the
expansion factor o enhances the model’s representational ca-
pacity for capturing both task-specific features and cross-task
interactions. However, excessively large values can lead to in-
creased computational complexity and over-parameterization.
The redundancy in the representation space dilutes effective
information and makes model optimization more challenging,
resulting in worse performance.
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TABLE VII
EFFECT OF EXPAND FACTOR o« IN MTMAMBA++ ON NYUDV2 WITH
DIFFERENT NUMBERS OF TASKS

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 47, NO. 11, NOVEMBER 2025

TABLE IX
COMPARISON WITH STATE-OF-THE-ART METHODS IN MODEL SIZE AND COST
ON THE PASCAL-CONTEXT DATASET

o Semseg  Depth  Normal Boundary A;,[%]
mloUt RMSE|  mErr| odsFt T
1 58.10 0.4768 - - +7.33
S-D 2 58.25 0.4808 - - +7.08
3 58.23 0.4859 - - +6.57
1 54.85 0.4956 18.57 - +2.79
S-D-N 2 55.78 0.4888 18.43 - +4.04
3 55.30 0.4932 18.39 - +3.53
1 56.74 0.4927 18.45 79.40 +3.93
S-D-N-B | 2 57.01 0.4818 18.27 79.40 +4.82
3 55.85 0.4882 18.40 79.10 +3.71
“S”, “D”, “N”, and “B” denote the semantic segmentation, depth estimation, surface normal

estimation, and boundary detection tasks, respectively.

TABLE VIII
PERFORMANCE OF MTMAMBA++ WITH DIFFERENT SCALES OF SWIN
TRANSFORMER ENCODER ON NYUDV2

Semseg Depth Normal Boundary
Method Encoder '\ 1oUf RMSE, mPrr|  odsFt
MTMamba [24] o . o . 5193 05246 1945 77.80
MTMamba++ —WIoMaL - 5r44 05210 19.51 78.10
MTMamba [24] o . o 53.62 05126  19.28 77.70
MTMamba-++ WIN-Base 5508 05006  18.78 78.60
MTMamba [24] ¢ . = 5582 0.5066  18.63 78.70
MTMamba++ SVI-AT8€ 5701 04818 1827 79.40

The results in Table VII demonstrate that the optimal « value
is correlated with the severity of task conflicts. For the 2-task
setting (S-D), « = 1 achieves the best A,,,, because the semantic
segmentation and depth estimation tasks have relatively low
conflict, requiring minimal additional capacity for cross-task
interaction modeling. However, when the normal estimation task
is added in the 3-task setting (S-D-N), task conflicts become
more severe as evidenced by the significant performance drop
of both semantic segmentation and depth estimation tasks. In
this case, a = 2 becomes optimal in terms of A,,, indicating
that increased representational capacity is needed to handle the
heightened task conflicts. In the 4-task setting (S-D-N-B), while
the boundary detection task is added, the conflicts appear to be
somewhat alleviated as the boundary detection task can provide
complementary information to other tasks. Thus, & = 2 contin-
ues to perform best in terms of A,,, maintaining the balance
between adequate capacity for conflict resolution and avoiding
over-parameterization. Notably, o = 3 consistently underper-
forms across all configurations, demonstrating that excessively
large expansion factors lead to over-parameterization.

These results demonstrate that smaller o suffices for low-
conflict scenarios, while moderately larger « is beneficial when
severe conflicts exist, but excessively large o always degrades
performance. Thus, o = 2 is adopted as the default configura-
tion in MTMamba++ as it provides robust performance across
various multi-task scenarios.

6) Performance on Different Encoders: We perform an ex-
periment on NYUDWV?2 to investigate the performance of the pro-
posed MTMamba-++ with different scales of Swin Transformer
encoder. The results are shown in Table VIII. As can be seen,
as the model capacity increases, MTMamba++ performs better

#Param FLOPs|Semseg Parsing Saliency Normal Boundary

Method MB, GCBl | mloUf mloU maxF{ mErr, odsFf
PAD-Net! [5] 380 773 | 7801 6712 7921 1437 7260
MTL-Net! [6] 851 774 | 7831 6740 8475 1467  73.00
ATRCH [57] 340 871 | 7711 6684 8120 1423 7210
InvPT! [9] 23 669 | 7903 6761 8481 1415  73.00
TaskPrompter' [12] | 401 497 | 8089 6889 8483 1372  73.50
InvPT++ [11] 01 667 | 8022 6912 8474 1373 7420
TSP-Transformer [13]| 422 1991 | 8148 7064 8486 1369  74.80
MLORE [14] 407 571 | 8141 7052 8490 1351 7542
TaskDiffusion [34] | 416 610 | 8121 6962 8494 1355  74.89
MTMamba [24] 36 632 | 8L1I 7262 8414 1414 78.80
MTMambas++ 343 609 | 8194 7287 8556 1429 7860

1 denotes that the results are from [12].

on all tasks accordingly. Moreover, MTMamba++ consistently
outperforms MTMamba on different encoders, confirming the
effectiveness of the proposed S-CTM and LiteHead.

7) Analysis of Model Size and Cost: Table IX compares
model size and FLOPs between the proposed MTMamba++
and baselines on the PASCAL-Context dataset. We can see
that MTMamba++ achieves state-of-the-art performance while
maintaining high computational efficiency. Specifically, with
only 343 MB parameters (14.3%, 18.7%, 15.7%, and 17.5%
fewer than InvPT, TSP-Transformer, MLoRE, and TaskDiffu-
sion, respectively), our MTMamba-++ achieves superior perfor-
mance across most tasks. In terms of computational cost, MT-
Mamba++ requires only 609 GB FLOPs, which is merely 30.6%
of the resources needed by TSP-Transformer (1991 GB) while
still outperforming it. Compared to MLoRE and TaskDiffusion,
MTMamba-++ achieves better results with comparable computa-
tional demands. These results confirm that MTMamba-++ offers
not only performance advantages but also practical benefits for
real-world applications through its efficient use of computational
resources.

D. Visualization of Predictions

In this section, we compare the output predictions
from MTMamba++ against baselines, including InvPT [9],
TaskPrompter [12], and MTMamba [24]. Figs. 6, 7, and 8
show the qualitative results on NYUDv2, PASCAL-Context, and
Cityscapes datasets, respectively. As can be seen, MTMamba-++
has better visual results than baselines in all datasets. For exam-
ple, as highlighted with yellow circles in Fig. 6, MTMamba++
demonstrates fewer misclassification errors in semantic seg-
mentation and produces sharper predicted boundaries in the
boundary detection task. Fig. 7 illustrates that MTMamba++
achieves more accurate detection of small objects in both se-
mantic segmentation and human parsing tasks, particularly ev-
ident in the highlighted regions where our method can effec-
tively detect distant pedestrians. MTMamba++ also generates
sharper predicted boundaries for the object boundary detection
task. Similarly, as highlighted in Fig. 8§, MTMamba++ achieves
higher precision in detecting small objects (e.g., street lamps
and tree trunks) in semantic segmentation, which are missed
by Transformer-based methods. Hence, both qualitative study
(Figs. 6, 7, and 8) and quantitative study (Tables I and II) show
the superior performance of MTMamba++.
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Fig. 6. Qualitative comparison with baselines (i.e., InvPT [9], TaskPrompter [12], and MTMamba [24]) on the NYUDv2 dataset. As highlighted, MTMamba++
generates better predictions with more accurate details and sharper boundaries. In the semantic segmentation task, the black regions in GT denote the background
and are excluded from the computation of loss and evaluation metric (i.e., mloU). Zoom in for more details.
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Fig. 7. Qualitative comparison with baselines (i.e., InvPT [9], TaskPrompter [12], and MTMamba [24]) on the PASCAL-Context dataset. As highlighted,
MTMamba++ generates better predictions with sharper boundaries and greater precision in small objects. Zoom in for more details.
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Fig. 8. Qualitative comparison with baselines (i.e., InvPT [9], TaskPrompter [12], and MTMamba [24]) on the Cityscapes dataset. As highlighted, MTMamba++
produces more precise predictions in small objects. Zoom in for more details.
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V. CONCLUSION

In this paper, we propose MTMamba++, a novel multi-task
architecture with a Mamba-based decoder for multi-task dense
scene understanding. With two types of core blocks (i.e., STM
and CTM blocks), MTMamba++ can effectively model long-
range dependency and achieve cross-task interaction. We design
two variants of the CTM block to promote knowledge exchange
across tasks from the feature and semantic perspectives, respec-
tively. Experiments on three benchmark datasets demonstrate
that MTMamba++ achieves better performance than previous
methods while maintaining high computational efficiency.
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